تعداد نشریات | 8 |
تعداد شمارهها | 308 |
تعداد مقالات | 3,860 |
تعداد مشاهده مقاله | 7,504,204 |
تعداد دریافت فایل اصل مقاله | 2,730,173 |
نقش تمرین هوازی و دریافت مکمل امگا سه بر سطح پروتئین فسفریلۀ تاو در هیپوکامپ موشهای آلزایمریشده با هوموسیستئین | ||
فیزیولوژی ورزشی | ||
مقاله 10، دوره 8، شماره 31، آبان 1395، صفحه 171-188 اصل مقاله (226.35 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22089/spj.2016.814 | ||
نویسندگان | ||
رضا قراری عارفی1؛ مرضیه ثاقب جو* 2؛ مهدی هدایتی3؛ رزیتا فتحی4 | ||
1دانشجوی دکتری فیزیولوژی ورزش، دانشگاه بیرجند | ||
2دانشیار فیزیولوژی ورزش، دانشگاه بیرجند | ||
3دانشیار بیوشیمی، دانشگاه علومپزشکی شهیدبهشتی | ||
4دانشیار فیزیولوژی ورزش، دانشگاه مازندران | ||
چکیده | ||
هدف از پژوهش حاضر، بررسی اثر هشت هفته تمرین هوازی و دریافت مکمل امگا سه بر سطح پروتئین فسفریلۀ تاو در هیپوکامپ موشهای آلزایمریشده با هوموسیستئین میباشد. بدینمنظور، 60 سر موش صحرایی نر نژاد ویستار (سن 12 هفته و میانگین وزن 91/11±31/222 گرم) به شش گروه مساوی آلزایمری + امگا سه، آلزایمری + تمرین، آلزایمری + تمرین + امگا سه، کنترل سالم، شم و کنترل آلزایمری تقسیم شدند. شایانذکر است که برای القای آلزایمر از تزریق هوموسیستئین با دوز 6/0 مولار به درون بطن مغز استفاده شد و تمرین با سرعت 20 متر در دقیقه (60 دقیقه در هر جلسه، پنج روز در هفته روی نوار گردان) اعمال گردید. گروههای مکمل در مدت هشت هفته، روزانه 800 میلیگرم بهازای هر کیلوگرم وزن بدن، مکمل امگا سه دریافت کردند. لازمبهذکر است که سطح پروتئین فسفریلۀ تاو به روش الایزا اندازهگیری گشت. تحلیل دادهها نیز با استفاده از آزمون آنالیز واریانس یکطرفه و آزمون تعقیبی توکی انجام شد (P<0.05). نتایج نشان میدهد که سطح پروتئین فسفریلۀ تاو هیپوکامپ در گروههای آلزایمری + تمرین، آلزایمری + مکمل امگا سه و کنترل سالم نسبت به گروه کنترل آلزایمری بهصورت معناداری پایینتر بود (مقادیر P بهترتیب 03/0، 01/0 و 003/0). درمقابل، سطح پروتئین فسفریلۀ تاو هیپوکامپ در گروه آلزایمری + تمرین + مکمل امگا سه نسبت به گروه کنترل آلزایمری تفاوت معناداری نداشت (P=0.34). بهنظر میرسد تمرین هوازی و مصرف امگا سه بهطور مستقل میتوانند باعث کاهش پروتئین فسفریلۀ تاو در هیپوکامپ موشهای آلزایمری گردند و نیز اینکه استفادۀ همزمان از دو شیوه باعث تعدیل اثر هریک از این مداخلات میشود. | ||
کلیدواژهها | ||
تمرین هوازی؛ اسید چرب امگا سه؛ آلزایمر؛ پروتئین تاو؛ هوموسیستئین | ||
مراجع | ||
1. Lin T W, Shih Y H, Chen S J, Lien C H, Chang C Y, Huang T Y, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol Learn Mem. 2015; 118: 189-97.
2. Hong-Qi Y, Zhi-Kun S, Sheng-Di C. Current advances in the treatment of Alzheimer's disease: Focused on considerations targeting Aβ and tau. Transl Neurodegener. 2012; 1(1): 1-12.
3. Green K N, Martinez-Coria H, Khashwji H, Hall E B, Yurko-Mauro K A, Ellis L, et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-β and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci. 2007; 27(16): 4385-95.
4. Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hübschmann S, et al. Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem. 2014; 289(49): 34389-407.
5. Li H L, Wang H H, Liu S J, Deng Y Q, Zhang Y J, Tian Q, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing β-catenin, a mechanism involved in Alzheimer's neurodegeneration. Proc Natl Acad Sci U S A. 2007; 104(9): 3591-6.
6. Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, et al. The ambiguous relationship of oxidative stress, Tau Hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longev. 2015; 2015:352723.
7. Trinczek B, Biernat J, Baumann K, Mandelkow E, Mandelkow E. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol Biol Cell. 1995; 6(12): 1887-902.
8. Wang J Z, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol. 2008; 85(2): 148-75.
9. Kamat P, Vacek J, Kalani A, Tyagi N. Homocysteine induced cerebrovascular dysfunction: A link to alzheimer’s disease etiology. Open Neurol J. 2015; 9: 9-14.
10. Liu S J W J. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin. 2002; 23: 183-7.
11. Nation D A, Hong S, Jak A J, Delano-Wood L, Mills P J, Bondi M W, et al. Stress, exercise, and Alzheimer’s disease: A neurovascular pathway. Med Hypotheses. 2011; 76(6): 847-54.
12. Abubakari A R, Naderali M M, Naderali E K. Omega-3 fatty acid supplementation and cognitive function: Are smaller dosages more beneficial? Int J Gen Med. 2014; 7: 463-73. (In Persian).
13. Ma Q L, Yang F, Rosario E R, Ubeda O J, Beech W, Gant D J, et al. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. J Neurosci. 2009; 29(28): 9078-89.
14. Arendash G, Jensen M, Salem N, Hussein N, Cracchiolo J, Dickson A, et al. A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer’s transgenic mice. Neuroscience. 2007; 149(2): 286-302.
15. Devore E E, Grodstein F, van Rooij F J, Hofman A, Rosner B, Stampfer M J, et al. Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. Am J Clin Nutr. 2009; 90(1): 170-6.
16. Freund-Levi Y, Hjorth E, Lindberg C, Cederholm T, Faxen-Irving G, Vedin I, et al. Effects of omega-3 fatty acids on inflammatory markers in cerebrospinal fluid and plasma in Alzheimer’s disease: The omegAD study. Dement Geriatr Cogn Disord. 2009; 27(5): 481-90.
17. Leem Y H, Lim H J, Shim S B, Cho J Y, Kim B S, Han P L. Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies. J Neurosci Res. 2009; 87(11): 2561-70.
18. Belarbi K, Burnouf S, Fernandez-Gomez F J, Laurent C, Lestavel S, Figeac M, et al. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiol Dis. 2011; 43(2): 486-94.
19. Liang K Y, Mintun M A, Fagan A M, Goate A M, Bugg J M, Holtzman D M, et al. Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann Neurol. 2010; 68(3): 311-18.
20. Hosseinzadeh S, Roshan V D, Pourasghar M. Effects of intermittent aerobic training on passive avoidance test (shuttle box) and stress markers in the dorsal hippocampus of Wistar rats exposed to administration of homocysteine. Iran J Psychiatry Behav Sci. 2013; 7(1): 37-44. (In Persian).
21. Garekani E T, Mohebbi H, Kraemer R R, Fathi R. Exercise training intensity/ volume affects plasma and tissue adiponectin concentrations in the male rat. Peptides. 2011; 32(5): 1008-12. (In Persian).
22. Fathei M. The effect of eight weeks aerobic exercise on thyroid hormones in female rats with polycystic ovary syndrome. Intl j Sport Std. 2014; 4(3): 355-60
23. Gama C S, Canever L, Panizzutti B, Gubert C, Stertz L, Massuda R, et al. Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: A study in adolescent rats with ketamine-induced model of schizophrenia. Schizophr Res. 2012; 141(2): 162-7.
24. Ma H, Wang J, Wang J, Li Y, Li J. Fish oil ameliorates the allograft arteriosclerosis of intestine on rats. Pediatr Transplant. 2007; 11(2): 173-9.
25. Ramesh B N, Rao T S, Prakasam A, Sambamurti K, Rao K J. Neuronutrition and Alzheimer's disease. J Alzheimers Dis. 2010; 19(4): 1123-39.
26. Zhang C E, Tian Q, Wei W, Peng J H, Liu G P, Zhou X W, et al. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging. 2008; 29(11): 1654-65.
27. Zhuo J M, Wang H, Praticò D. Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol Sci. 2011; 32(9): 562-71.
28. Bayod S, Del Valle J, Canudas A M, Lalanza J F, Sanchez-Roigé S, Camins A, et al. Long-term treadmill exercise induces neuroprotective molecular changes in rat brain. J Appl Physiol. 2011; 111(5): 1380-90.
29. Leckie R L, Manuck S B, Bhattacharjee N, Muldoon M F, Flory J M, Erickson K I. Omega-3 fatty acids moderate effects of physical activity on cognitive function. Neuropsychologia. 2014; 59: 103-11.
30. Um H S, Kang E B, Koo J H, Kim H T, Kim E J, Yang C H, et al. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease. Neurosci Res. 2011; 69(2): 161-73.
31. Ohia-Nwoko O, Montazari S, Lau Y S, Eriksen J L. Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener. 2014; 9(1): 1-17.
32. Su H M. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem. 2010; 21(5): 364-73.
33. Freund L Y, Vedin I, Cederholm T, Basun H, Faxén I G, Eriksdotter M, et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: The omegAD study. J Intern Med. 2013; 275: 428-36.
34. Davies C, Tournier C. Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans. 2012; 40(1): 85-9.
35. Hooijmans C R, Pasker-de Jong P C, de Vries R B, Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer's pathology in animal models of Alzheimer's disease: A systematic review and meta-analysis. J Alzheimers Dis. 2012; 28(1): 191-209.
36. Wu S, Ding Y, Wu F, Li R, Hou J, Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer's disease: A meta-analysis. Neurosci Biobehav Rev. 2015; 48: 1-9. | ||
آمار تعداد مشاهده مقاله: 1,324 تعداد دریافت فایل اصل مقاله: 960 |