تعداد نشریات | 8 |
تعداد شمارهها | 308 |
تعداد مقالات | 3,852 |
تعداد مشاهده مقاله | 7,287,794 |
تعداد دریافت فایل اصل مقاله | 2,719,142 |
تأثیر شش هفته فعالیت کاهشیافته بهشکل درد نوروپاتیک بر بیان ژن پروتئین رانندۀ یکشنبۀ عصب سیاتیک رتهای نر ویستار | ||
فیزیولوژی ورزشی | ||
مقاله 7، دوره 8، شماره 31، آبان 1395، صفحه 121-134 اصل مقاله (218.03 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22089/spj.2016.812 | ||
نویسندگان | ||
عبدالرضا کاظمی* 1؛ مسعود رحمتی2؛ علی ضیا سیستانی3 | ||
1استادیار فیزیولوژی ورزشی، دانشگاه ولیعصر (عج) رفسنجان و مرکز تحقیقات علوم اعصاب، پژوهشکدۀ نوروفارماکولوژی، دانشگاه علومپزشکی کرمان | ||
2استادیار فیزیولوژی ورزشی، دانشگاه لرستان | ||
3کارشناسی ارشد، گروه فیزیولوژی ورزشی، دانشگاه آزاد اسلامی واحد کرمان و مرکز تحقیقات علوم اعصاب، پژوهشکدۀ نوروفارماکولوژی، دانشگاه علومپزشکی کرمان | ||
چکیده | ||
هدف از پژوهش حاضر، بررسی اثر شش هفته فعالیت کاهشیافته بهشکل درد نوروپاتیک بر بیان ژن پروتئین رانندۀ یکشنبه در عصب سیاتیک رتهای نر ویستار میباشد. جهت انجام پژوهش، 10 سر موش صحرایی نر نژاد ویستار (با میانگین وزنی 30±250 گرم) به دو گروه کنترل سالم (تعداد=5) و گروه فعالیت کاهشیافته (تعداد=5) تقسیم شدند. طی شش هفته پس از آن، آزمونهای رفتاری درد نوروپاتیک در گروههای پژوهشی بهصورت مستمر انجام شد و در پایان شش هفته، تغییرات بیان ژن پروتئین رانندۀ یکشنبه در عصبسیاتیک با تکنیک ریل تایم اندازهگیری گردید و با روشΔΔCT-2 و آزمون تی مستقل محاسبه شد. تحلیل واریانس یکطرفه نشان میدهد آستانۀ تحریک درد که با آزمونهای رفتاری درد نوروپاتیک آلوداینیای مکانیکی و پردردی حرارتی سنجیده شده است، در گروه لیگاتوربندی نسبت به گروه کنترل بهشکل معناداری کمتر میباشد (P≤0.05). همچنین، میزان بیان ژن پروتئین رانندۀ یکشنبه در عصب سیاتیک در گروه لیگاتوربندیشده بهطور معناداری نسبت به گروه کنترل افزایش داشته است (P≤0.05). یافتههای پژوهش حاضر بیانگر این است که فعالیت کاهشیافته در اثر درد نوروپاتی با افزایش بیان پروتئین رانندۀ یکشنبه همراه بوده است که احتمالاً این افزایش با آسیبها و اختلالات مرتبط با تخریب عصب و انتقال آکسونی در فعالیت کاهشیافته بهشکل درد نوروپاتیک مرتبط میباشد. | ||
کلیدواژهها | ||
درد نوروپاتیک؛ فعالیت کاهشیافته؛ اختلال انتقال آکسونی؛ پروتئین رانندۀ یکشنبه | ||
مراجع | ||
1. Millecamps S, Julien J P. Axonal transport deficits and neurodegenerative diseases. Nature Reviews Neuroscience. 2013; 14(3): 161-76. 2. Perlson E, Maday S, Fu M M, Moughamian A J, Holzbaur E L. Retrograde axonal transport: Pathways to cell death? Trends in Neurosciences. 2010; 33(7): 335-44. 3. Lasek R J, Garner J A, Brady S T. Axonal transport of the cytoplasmic matrix. The Journal of Cell Biology. 1984; 99(1): 212-21. 4. Bowman A B, Kamal A, Ritchings B W, Philp A V, McGrail M, Gindhart J G, et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell. 2000; 103(4): 583-94. 5. Cavalli V, Kujala P, Klumperman J, Goldstein L S. Sunday driver links axonal transport to damage signaling. The Journal of Cell Biology. 2005; 168(5): 775-87. 6. Kelkar N, Gupta S, Dickens M, Davis R J. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Molecular and Cellular Biology. 2000; 20(3): 1030-43. 7. Davis R J. Signal transduction by the JNK group of MAP kinases. Cell. 2000 13;103(2): 239-52. 8. Treede R D, Jensen T S, Campbell J, Cruccu G, Dostrovsky J, Griffin J, et al. Neuropathic pain redefinition and a grading system for clinical and research purposes. Neurology. 2008; 70(18): 1630-5. 9. Zaza C, Baine N. Cancer pain and psychosocial factors: A critical review of the literature. Journal of Pain and Symptom Management. 2002; 24(5): 526-42. 10. Gong W, Johanek L M, Sluka K A. Spinal cord stimulation reduces mechanical hyperalgesia and restores physical activity levels in animals with noninflammatory muscle pain in a frequency-dependent manner. Anesthesia and Analgesia. 2014; 119(1): 186-95. 11. Evans W J. Skeletal muscle loss: Cachexia, sarcopenia, and inactivity. The American Journal of Clinical Nutrition. 2010; 91(4): 1123-7. 12. Daemen M, Kurvers H, Bullens P, Slaaf D, Freling G, Kitslaar P, et al. Motor denervation induces altered muscle fibre type densities and atrophy in a rat model of neuropathic pain. Neuroscience Letters. 1998; 247(2): 204-8. 13. Jakobsen J, Brimijoin S, Sidenius P. Axonal transport in neuropathy. Muscle & Nerve. 1983; 6(2): 164-6. 14. Ho Kim S, Mo Chung J. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992; 50(3): 355-63. 15. Sharma N K, Ryals J M, Gajewski B J, Wright D E. Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain. Physical Therapy. 2010; 90(5): 714-25. 16. Calcutt N A, Jorge M C, Yaksh T L, Chaplan S R. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: Effects of insulin, aldose reductase inhibition and lidocaine. Pain. 1996; 68(2): 293-9. 17. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988; 32(1): 77-88. 18. Stagg N J, Mata H P, Ibrahim M M, Henriksen E J, Porreca F, Vanderah T W, et al. Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: Role of endogenous opioids. Anesthesiology. 2011; 114(4): 940-8. 19. van den Berg-Emons R J, Schasfoort F C, de Vos L A, Bussmann J B, Stam H J. Impact of chronic pain on everyday physical activity. European Journal of Pain. 2007; 11(5): 587-93. 20. Koushika S P. “JIP” ing along the axon: The complex roles of JIPs in axonal transport. Bioessays. 2008; 30(1): 10-4. 21. Yang D D, Kuan C Y, Whitmarsh A J, Rinócn M, Zheng T S, Davis R J, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature. 1997; 389(6653): 865-70. 22. Kenney A M, Kocsis J D. Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia in vivo. The Journal of Neuroscience. 1998; 18(4): 1318-28. 23. Abe N, Almenar-Queralt A, Lillo C, Shen Z, Lozach J, Briggs S P, et al. Sunday driver interacts with two distinct classes of axonal organelles. Journal of Biological Chemistry. 2009; 284(50): 34628-39. 24. Huang S H, Duan S, Sun T, Wang J, Zhao L, Geng Z, et al. JIP3 mediates TrkB axonal anterograde transport and enhances BDNF signaling by directly bridging TrkB with kinesin-1. The Journal of Neuroscience. 2011; 31(29): 10602-14. 25. Takino T, Nakada M, Miyamori H, Watanabe Y, Sato T, Gantulga D, et al. JSAP1/JIP3 cooperates with focal adhesion kinase to regulate c-Jun N-terminal kinase and cell migration. Journal of Biological Chemistry. 2005; 280(45): 37772-81. 26. Gardiner P, Dai Y, Heckman C J. Effects of exercise training on α-motoneurons. J Appl Physiol. 2006; 101(4): 1228–36. 27. Beaumont E, Gardiner P. Effects of daily spontaneous running on the electrophysiological properties of hindlimb motoneurones in rats. J Physiol. 2002; 540 (Pt1): 129–38. 28. Beaumont E, Gardiner P F. Endurance training alters the biophysical properties of hindlimb motoneurons in rats. Muscle Nerve. 2003; 27:(2) 228–36. 29. Edstrom J E. Effects of increased motor activity on the dimensions and the staining properties of the neuron soma. J Comp Neurol. 1957; 107(2): 295–304. 30. Gerchman L B, Edgerton V R, Carrow R E. Effects of physical training on the histochemistry and morphology of ventral motor neurons. Exp Neurol. 1975;49(3): 790-801. 31. Dahlstrom A, Heiwall P O, Booj S, Dahllof A G. The influence of supraspinal impulse activity on the intra-axonal transport of acetylcholine, choline acetyltransferase and acetylcholinesterase in rat motor neurons. Acta Physiol Scand. 1978; 103(3): 308–19. 32. Jasmin B, Lavoie P A, Gardiner P F. Fast axonal transport of acetylcholinesterase in rat sciatic motoneurons is enhanced following prolonged daily running, but not following swimming. Neurosci Lett. 1987; 78:(2): 156–60. 33. Jasmin B, Lavoie P, Gardiner P. Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats. Am J Physiol Cell Physiol. 1988; 255(6 pt 1): 731–6. 34. Kang C M, Lavoie P A, Gardiner P F. Chronic exercise increases SNAP-25 abundance in fast-transported proteins of rat motoneurones. Neuroreport. 1995; 6(3): 549–53. 35. Rahmati M, Gharakhanlou R, Movahedin M, Mowla S J, Khazeni A, Mazaheri Z. Effects of endurance training on mRNA levels of the KIF1B motor protein in sensory areas of the spinal cord of rats with diabetic neuropathy. Modares Journal of Medical Sciences: Pathobiology. 2013; 16(2): 25-38. 36. Rahmati M, Gharakhanlou R, Movahedin M, Mowla S J, Khazani A, Fouladvand M, et al. Treadmill training modifies KIF5B motor protein in the STZ-induced diabetic rat spinal cord and sciatic nerve. Arch Iran Med. 2015; 18(2): 94–101. (In Persian). 37. Karami Paskohani A, Rahmati M, Kazemi A R. Modulation of sunday driver gene expression in soleus muscle of rats with diabetic neuropathy following endurance training. Iranian Journal of Diabetes and Metabolism. 2015; 14(3): 169-78. (In Persian). | ||
آمار تعداد مشاهده مقاله: 1,134 تعداد دریافت فایل اصل مقاله: 705 |