تعداد نشریات | 8 |
تعداد شمارهها | 308 |
تعداد مقالات | 3,860 |
تعداد مشاهده مقاله | 7,545,754 |
تعداد دریافت فایل اصل مقاله | 2,731,046 |
تأثیر تغییر در ویژگیهای مختلف حرکات دو دست بر انتقال حرکت دودستی نامتقارن به الگوی عکس | |
رفتار حرکتی | |
مقاله 7، دوره 8، شماره 24، شهریور 1395، صفحه 133-152 اصل مقاله (1.09 M) | |
نوع مقاله: مقاله پژوهشی | |
شناسه دیجیتال (DOI): 10.22089/mbj.2016.759 | |
نویسندگان | |
محمدرضا دوستان* 1؛ مهدی نمازی زاده2؛ محمود شیخ3؛ ناصر نقدی4 | |
1دانشجوی دکتری دانشگاه تهران | |
2دانشیار دانشگاه تهران | |
3استاد دانشگاه تهران | |
4استاد انستیتو پاستور ایران | |
چکیده | |
اندام مجری از حافظه حرکتی در حرکات نامتقارن دودستی به تفاوت در ویژگیهای خاص حرکت دودست بستگی دارد و نیاز به بازنگری دارد. هدف پژوهش حاضر ارزیابی تاثیر تغییر در ویژگیهای مختلف حرکات دو دست بر انتقال حرکت دودستی نامتقارن به الگوی عکس بود و به بررسی فرضیهی استقلال اندام مجری از حافظه حرکتی پرداخته شد. ابزار مورد استفاده در پژوهش حاضر شامل قلم نوری با حسگر ویژه، لپتاپ، دستکش ویژه و مترونوم بود. آزمودنیهای تحقیق شامل دانشجویان راست دست پسر (تعداد ۳۰ نفر) بودند که در سه گروه قرار گرفتند. هر گروه حرکت دودستی نامتقارنی را تمرین می-کردند که در آن حرکت دو دست از نظر ویژگیهای مختلفی تفاوت داشتند (گروه ۱: اثر نیروی جاذبه، گروه ۲: الگوی زمانی، گروه ۳: اندازه حرکت). گروهها پس از پیش آزمون به مدت چهار روز تمرین نموده سپس پسآزمونها به عمل میآمد. نتایج نشان داد که در حرکات دودستی نامتقارنی که حرکات دو دست از نظر اثر نیروی جاذبه بر دو دست متفاوت باشد، انتقال مثبتی به حالتی که حرکت دو دست معاوضه میشود صورت میگیرد. اما اگر تفاوت در الگوی زمانی باشد انتقالی مثبت صورت نمیگیرد و در واقع انتقال صفر است و هنگامی که حرکت دو دست از نظر اندازه حرکت متفاوت بود، این انتقال منفی بود. بطور کلی بر حسب اینکه تفاوت در الگوی نامتقارن دودست جزء ویژگیهای کنترلی چه سطحی از سلسله مراتب کنترل سیستم عصبی باشد، ممکن است به الگوی وارونه آن منتقل شود یا نشود. بنابراین استنباط میشود که فرضیه استقلال | |
کلیدواژهها | |
انتقال؛ هماهنگی دودستی؛ فرضیه استقلال اندام مجری | |
مراجع | |
1. Klapp S T, Nelson J M, Jagacinski R J. Can people tap concurrently bimanual rhythms independently? Journal of Motor Behavior 30(4) (1998): 301-22.
|
|
2. Kurtz S, Lee T D. Part and whole perceptual-motor practice of a polyrhythm. Neurosci Lett. 338 (2003) 205–208.
|
|
3. Swinnen S P, Dounskaia N, Duysens J. Pattern of bimanual interference reveal movement encoding within a radial egocentric reference frame. J Cogn Neurosci. 2002; 14 (3): 463–71.
|
|
4. Swinnen S P. Intermanual coordination: From behavioural principles to neural-network interactions. Nat Rev Neurosci 2002 May;3(5):348-59.
|
|
5. Vangheluwe S, Suy E, Wenderoth N. Swinnen S. Learning and transfer of bimanual multifrequency patterns: Effector-independent and effector-specific levels of movement representation. Exp Brain Res. 2006; 170 (4): 543–54.
|
|
6. Marteniuk, R. G., & MacKenzie, C. L. (1980). Information processing in movement organization and execution. In R. Nickerson (Ed.), Attention and Performance VIII (pp. 29–57). Hillsdale: Erlbaum.
|
|
7. Oliveira S C. The neuronal basis of bimanual coordination: Recent neurophysiological evidence and functional models. Acta Psychol (Amst). 2002 Jun; 110(2-3):139-59.
|
|
8. Swinnen S P, Carson R G. The control and learning of patterns of interlimb coordination: Past and present issues in normal and disordered control. Acta Psychol (Amst). 2002; 110 (2-3): 129-37.
|
|
9. Swinnen S P K, Jardian R, Meulenbrock N, Dounskaia M, Hofkens V, Brandt V D. Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. Journal of Cognitive Neuroscience. 1997; 9(3); 348-77.
|
|
10. Heirani A, Farrokhi A. Effectors independence in complex bimanual coordination drawing tasks. Doctoral Disseration. Tehran: Kharazmi Univercity; Faculty of Physical Education and Sport Sciences; 2009. (In Persian).
|
|
11. Schmidt R A, Lee T D. Motor control and learning a behavioral emphasis. 3rd ed Canada: Human Kinetics; 1999. P. 206.
|
|
12. Turvey, M.T. (1977), Preliminaries to a theory of action with reference to vision. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing (pp. 211–265).
|
|
13. Kelso J A S, Holt K G, Kugler P N, Turvey M T. On the concept of coordinative structures as dissipative structures. I. Theoretical lines of convergence. Tutorials in motor behavior.New York. Advances in Psychology. 1980; 1: 3–47.
|
|
14. Ashley S. Bangerta, Patricia A. Reuter-Lorenza, Christine M. Walsh B, Anna B. Schachtera, Rachael D. Seidler. Bimanual coordination and aging: Neurobehavioral implications. Journal Neuropsychologia. 2010; 48: 1165–70.
|
|
15. Li C. R, Zhang S, Duann J R, Yan P, Sinha R, Carolyn M M. Gender differences in cognitive control: An extended investigation of the stop signal task. Brain Imaging Behav. 2009; 3(3): 262–76.
|
|
16. Vangheluwe S, Suy E, Wenderoth N, Swinnen S. P. Learning and transfer of bimanual multifrequency patterns: Effector-independent and effector-specific levels of movement representation. Exp Brain Res. 2006 Apr; 170(4):543-54. Epub 2005 Nov 24.
|
|
17. Wu T, Wang L, Hallett M, et al. Neural correlates of bimanual anti-phase and in-phase movements in parkinson's disease. A Journal of Neurology. Brain. 2010; 133(8): 2394–2409.
|
|
18. Zenone P G, Kelso J A. Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. J Exp Psychol. 1992; 18 (2): 403–21.
|
|
19. Zanone P G, Kelso J A. Coordination dynamics of learning and transfer: Collective and component levels. J Exp Psychol. 1997; 23 (5): 1454–80.
|
|
20. Magil R (2007). Motor learning and control: Concepts and applications. 8th edn. New York: Mc Grow-Hill.
|
|
21. Vangheluwe S, Suy E, Swinnen S P. Learning and transfer of bimanual multifrequency patterns: Abstract and effector-specific levels of movement representation. Exp Brain Res. 2006; 170(4): 543-54.
|
|
22. Sisti H M, Geurts M, Clerckx R, Gooijers J, Coxon J P, Heitger M, Caeyenberghs K, Iseult A. M. Beets, Serbruyns L, Swinnen S.P. Testing multiple coordination constraints with a novel bimanual visuomotor task. Bimanual visuomotor task, Motor Control Laboratory, Research Center of Movement Control and Neuroplasticity. PLoS One. 2011;6(8): 23619.
|
|
23. Doustan M, Boveiri K, Zilaei B, Seifourian M. The study of transfer of asymmetrical bimanual movement to its converse pattern: Analysis on bimanual movements’ theories. Journal of Motor Behavior and Sport Psychology. 2012; 1(8): 553-64. (In Persian).
|
|
24. Papaxanthis C, Pozzo T, McIntyre J. Arm end-point trajectories under normal and micro-gravity environments. Acta Astronautica. 1998b; 43(36): 153-61.
|
|
25. Soechting J F, Flanders M. Movement planning: Kinematics, dynamics, both or neither. In vision and action. New York: Cambridge University Press; 1998. P. 352–71.
|
|
26. Nishikawa K C, Murray S T, Flanders M. Do arm postures vary with the speed of reaching? J Neurophysiol. 1999 May; 81(5):2582-6.
|
|
27. Papaxanthis C, Pozzo T, Schieppati M. Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed. Exp Brain Res. 2003; 148(4): 498–503.
|
|
28. Papaxanthis C, Pozzo T, McIntyre J. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience. 2005; 35(2): 371–83.
|
|
29. Oliveira S C. The neuronal basis of bimanual coordination: Recent neurophysiological evidence and functional models. Acta Psychol (Amst). 2002 Jun;110(2-3):139-59.
|
|
30. Nozaki D, Scott S H. Multi-compartment model can explain partial transfer of learning within the same limb between unimanual and bimanual reaching. Journal of Experimental Brain. 2009; 194 (3): 451-63.
|
|
31. Makia B Y, Wonge K. F, Sugiuraa M, Ozakic T, Sadatoa N. Asymmetric control mechanisms of bimanual coordination: An application of directed connectivity analysis to kinematic and functional MRI data. Neuro Image. 2008; 4(42): 1295-304.
|
|
32. Goerres G W, Samuel M, Jenkins H, Brooks D J. Cerebral control of unimanual and bimanual movements: An H2 15O PET study. Neuro Report. 1998 Nov 16; 9(16):3631-8.
|
|
33. Toyokura M, Muro I, Komiya T, Obara M. Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: Analysis using functional magnetic resonance imaging. Brain Res Bull. 1999 Jan 15; 48(2):211-7.
|
|
34. Wenderoth N, Debaere F, Sunaert S, Van Hecke P, Swinnen S P. Parieto-premotor areas mediate directional interference during bimanual movements. Cereb Cortex. 2004; 14(10): 1153-63.
|
|
35. Meister I G, Foltys H, Gallea C, and Hallett M. How the brain handles temporally uncoupled bimanual movements? Cerebral Cortex. 2010; 20(12) : 2996-3004.
|
|
36. Wenderoth N, Debaere F, Sunaert S, Swinnen S P. Spatial interference during bimanual coordination: Differential brain networks associated with control of movement amplitude and direction. Hum Brain Mapp. 2005 Dec; 26(4):286-300.
|
|
37. Delgadoa L M, Solesio-Jofre E A, D.J. Serrienb, D. Mantinic,D, A. Daffertshofere, S.P. Swinnena. Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neurosci Biobehav Rev. 2014 Nov; 47:614-35.
|