تعداد نشریات | 8 |
تعداد شمارهها | 308 |
تعداد مقالات | 3,856 |
تعداد مشاهده مقاله | 7,273,924 |
تعداد دریافت فایل اصل مقاله | 2,710,817 |
تاثیر دیابت و تمرین استقامتی بر میزان بیان ژن فاکتور نوروتروفیک مشتق از مغز (BDNF) در بخش حسی نخاع موش های صحرایی | |
فیزیولوژی ورزشی | |
مقاله 9، دوره 7، شماره 28، اسفند 1394، صفحه 131-146 اصل مقاله (219.5 K) | |
نوع مقاله: مقاله پژوهشی | |
نویسندگان | |
رسول اسلامی* 1؛ غزاله سرخ کمان زاده2؛ رضا قراخانلو3؛ عبدالرضا کاظمی4؛ عبدالعلی بنایی فر5 | |
1استادیار دانشگاه علامه طباطبایی | |
2کارشناس ارشد دانشگاه آزاد کرمان | |
3دانشیار دانشگاه تربیت مدرس | |
4استادیار دانشگاه ولی عصر رفسنجان | |
5استادیار دانشگاه آزاد اسلامی واحد تهران جنوب | |
چکیده | |
این باور وجود دارد که فقدان حمایت تروفیک به پیشرفت نروپاتی دیابت کمک می کند. هدف از پژوهش حاضر بررسی اثر 6 هفته تمرین استقامتی بر بیان ژن عامل تغذیه عصبی مشتق از مغز (BDNF) در ریشه های حسی عصب سیاتیک موشهای صحرایی دارای نروپاتی دیابت بود. 28 سر رت از نژاد ویستار با میانگین توده بدنی 2/11±271 گرم به طور تصادفی در چهار گروه دیابت کنترل، دیابت تمرین، سالم کنترل و سالم تمرین قرار گرفتند. جهت القای نروپاتی دیابت، پس از 12 ساعت ناشتایی از روش تزریق درون صفاقی محلول STZ (mg/kg45) استفاده گردید. 2 هفته پس از تزریق STZ پروتکل تمرین استقامتی با شدت متوسط به مدت 6 هفته انجام گردید و 24 ساعت پس از آخرین جلسه تمرینی حیوانات تشریح شدند. بیان ژنBDNF با استفاده از تکنیک Real time-PCR مورد ارزیابی قرار گرفت. برای تجزیه و تحلیل داده ها از آزمون کوریسکال والیس و یو من ویتنی استفاده شد (05/0≥P). نتایج نشان داد که دیابت باعث کاهش 10 برابری در بیان ژن BDNF در بخش حسی عصب سیاتیک گردید. با این حال، 6 هفته تمرین استقامتی توانست این کاهش بیان BDNFناشی از دیابت را تا حدودی جبران کند (043/0=P). پژوهش حاضر نشان داد که دیابت می تواند باعث کاهش بیانBDNF در ریشه های حسی عصب سیاتیک گردد که تا حدودی با تمرین استقامتی قابل جبران است. در مجموع، نتایج این پژوهش می تواند نقطه روشنی بر اثبات فرضیه کاهش حمایت نروتروفیکی در نروپاتی دیابت باشد. | |
کلیدواژهها | |
نوروپاتی دیابت؛ تمرین ورزشی؛ فاکتور نوروتروفیک مشتق از مغز؛ نخاع شوکی | |
مراجع | |
1) Feldman E L, Stevens M J, Russell J W, Greene D A. Diabetic neuropathy. In. Current Review of Diabetes. S. Taylor (Ed.). Current Medicine. Philadelphia; 1999. pp: 71–83.
|
|
2) Schmeichel A M, Schmelzer J D, Low P A. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes. 2003; 52:165–71.
|
|
3) Leinninger G M, Vincent AM and Feld EL. The role of growth factors in diabetic peripheral neuropathy. Journal of the Peripheral Nervous System. 2004; 9: 26–53.
|
|
4) Hellweg R, Hartung H D. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: A possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res. 1990; 26: 258–67.
|
|
5) Kasayama S, Oka T. Impaired production of nerve growth factor in the submandibular gland of diabetic mice. Am J Physiol. 1989; 257: 400–4.
|
|
6) Nagahara A H, Tuszynski M H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov. 2011; 10: 209–19.
|
|
7) Vavrek R, Pearse D D, Fouad K. Neuronal populations capable of regeneration following a combined treatment in rats with spinal cord transection. J Neurotrauma. 2007; 24: 1667–73.
|
|
8) Foster E, Robertson B, Fried K. TRKB-like immunoreactivity in rat dorsal root ganglia following sciatic nerve injury. Brain Res. 1994; 659: 267–71.
|
|
9) Ha S O, Kim J K, Hong H S, Kim D S, Cho H J. Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience. 2001; 107:301–9.
|
|
10) Mizisin A P, Bache M, DiStefano P S, Acheson A, Lindsay R M, Calcutt N A. BDNF attenuates functional and structural disorders in nerves of galactose-fed rats. J Neuropathol Exp Neurol. 1997; 56: 1290–301.
|
|
11) Sobue G, Yamamoto M, Doyu M, Li M, Yasuda T, Mitsuma T. Expression of mRNAs for neurotrophins (NGF, BDNF, and NT-3) and their receptors (p75NGFR, trk, trkB, and trkC) in human peripheral neuropathies. Neurochem Res. 1998; 23: 821–9.
|
|
12) Weis J, Saxena S, Evangelopoulos ME and Kruttgen A. Trophic factors in neurodegenerative disorders. IUBMB Life. 2003; 55(6): 353–7.
|
|
13) Gomez-Pinilla F, Ying Z, Roy R R, Molteni R, Edgerton V R. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002; 88: 2187–95.
|
|
14) Adlard P A, Perreau V M, Engesser-Cesar C, Cotman C W. The time course of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise. Neurosci Lett. 2004; 363: 43–8.
|
|
15) برزگر حامد، وسدی الهام، برجیانفرد محبوبه. تأثیر تمرینهای متفاوت ورزشی بر مقادیر عامل نوروتروفیک مشتق از مغز در موشهای صحرایی. نشریۀ فیزیولوژی ورزش. 1393؛ (24): 180ـ99. |
|
16) میرزایی سعید، فلاحمحمدی ضیا، حاجیزاده مقدم اکبر، فتحی رزیتا، علیزاده رستم، رنجبر روحالله. اثر 8 هفته تمرین استقامتی با مدتهای مختلف بر سطوح فاکتورهای نوروتروفیک مشتق از مغز در پلاسمای موشهای صحرایی نر. نشریۀ پژوهش در علوم ورزشی. 1390؛ (10): 28ـ115. |
|
17) فلاحمحمدی ضیا، نظری حسین. تأثیر 4 هفته تمرین پلیومتریک بر غلظت سرمی فاکتور نروتروفیک مشتق از مغز مردان فعال. نشریۀ فیزیولوژی ورزشی. 1392؛ (20): 38ـ29. |
|
18) Deschenes M R, Tenny K A, Wilson M H. Increased and decreased activity elicits specific morphological adaptations of the neuromuscular junction. Neuroscience. 2006; 137: 1277–83.
|
|
19) Zhang J Y, Luo X G, Xian C J, Liu Z H, Zhou X F. Endogenous BDNF is required formyelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci. 2000; 12: 4171–80.
|
|
20) Calcutt N. Modeling diabetic sensory neuropathy in rats. In Z. D. Luo (Ed.). Pain research methods in molecular medicine. Humana Press. 2004; 99: 55-65.
|
|
21) Rajasekar R, Manokaran K, Rajasekaran N, Duraisamy G and Kanakasabapathi D. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model. Journal of Diabetes & Metabolic Disorders. 2014; 33(13): 1-13.
|
|
22) Chae C H, Jung S L, An S H, Jung C K, Nam S N, Kim H T. Treadmill exercise suppresses muscle cell apoptosis by increasing nerve growth factor levels and stimulating p-phosphatidylinositol 3-kinase activation in the soleus of diabetic rats. J Physiol Biochem. 2011; 67(2): 235-41.
|
|
23) Ghanbari-Niaki A, Khabazian B M, Hossaini-Kakhak S A, Rahbarizadeh F, Hedayati M. Treadmill exercise enhances ABCA1 expression in rat liver. Biochemical and Biophysical Research Communications. 2007; 361, 841–6.
|
|
24) Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988; 32(1): 77-88.
|
|
25) Talbot S, Théberge-Turmel P, Liazoghli D, Sénécal J, Gaudreau P, Couture R. Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent. Journal of Neuroinflammation. 2009; 6-11. DOI: 10.1186/1742-2094-6-11
|
|
26) Tal M, Bennett G J. Extra-territorial pain in rats with a peripheral mononeuropathy: Mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain. 1994; 57(3): 375-82.
|
|
27) Christ-Roberts C Y, Pratipanawatr T, Pratipanawatr W, Berria R, Belfort R, Kashyap S, et al. Exercise training increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metabolism. 2004; 53: 1233–42.
|
|
28) Sriwijitkamol A, Coletta D, Estela W, Gabriela B, Sara M, John B, et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: A time-course and dose-response study. Diabetes. 2007; 56: 836 –48.
|
|
29) Andreassen C S, Jakobsen J, Flyvbjerg A, Andersen H. Expression of neurotrophic factors in diabetic muscle- relation to neuropathy and muscle strength. Brain. 2009: 132; 2724–33.
|
|
30) Boucek P. Advanced diabetic neuropathy: A point of no return? Rev Diabet Stud. 2006; 3(3): 7.
|
|
31) Yasuda H, Terada M, Maeda K, Kogawa S, Sanada M, Haneda M, et al. Diabetic neuropathy and nerve regeneration. Progress in Neurobiology. 2003; 69(4): 229-85.
|
|
32) Fernyhough P, Diemel L T, Tomlinson D R. Target tissue production and axonal transport of neurotrophin- 3 are reduced in streptozocin-diabetic rats. Diabetologia. 1998; 41: 300–6.
|
|
33) Fernyhough P, Diemel L T, Hardy J, Brewster W J, Mohiuddin L, Tomlinson D R. Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci. 1995; 7: 1107–10.
|
|
34) Acheson A, Conover J C, Fandl J P, DeChiara T M, Russell M, Thadani A, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature. 1995; 374: 450–3.
|
|
35) Karchewski L A, Kim F A, Johnston J, McKnight R M, Verge V M. Anatomical evidence supporting the potential for modulation by multiple neurotrophins in the majority of adult lumbar sensory neurons. J Comp Neurol. 1999; 413: 327–41.
|
|
36) Wetmore C, Olson L. Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol. 1995; 353: 143–59.
|
|
37) Willis D, Li K W, Zheng J Q, Chang J H, Smit A, Kelly T, et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci. 1995; 25: 778–91.
|
|
38) Perlson E, Hanz S, Medzihradszky K F, Burlingame A L, Fainzilber M. From snails to sciatic nerve: Retrograde injury signaling from axon to soma in lesioned neurons. J Neurobiol. 2004; 58: 287–94.
|
|
39) Zhan W Z, Mantilla C B, Sieck G C. Regulation of neuromuscular transmission by neurotrophins. Acta Physiologica Sinica. 2003; 55(6): 617-24.
|
|
40) Van Praag H, Christie B, Sejnowski T, Gage F. Running enhances neurogenesis, learning and long - term potentiaton in mice. Proc Natl Acad Sci USA. 1999; 96: 13427-31.
|
|
41) Gold S M, Schulz K, Hartmann S, Mladek M, Lang U, Hellweg R, et al. Basal serum levels and reactivity of nerve growth factor and brain derived neruotropic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol. 2003; 138: 99-105.
|
|
42) Egan M F, Kojima M, Calicott J H, Goldberg T E, Kolachana B S, Bertolino A, et al. BDNF val66 net polymorphism affects activity – dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003; 112: 257-69.
|