- Singh, M., & Bedi, U. S. (2013). Is atherosclerosis regression a realistic goal of statin therapy and what does that mean?. Current Atherosclerosis Reports, 15(1), 294. https://doi.org/10.1007/s11883-012-0294-4.
- Safiri, S., Karamzad, N., Singh, K., Carson-Chahhoud, K., Adams, C., Nejadghaderi, S. A., Almasi-Hashiani, A., Sullman, M. J. M., Mansournia, M. A., Bragazzi, N. L., Kaufman, J. S., Collins, G. S., & Kolahi, A. A. (2022). Burden of ischemic heart disease and its attributable risk factors in 204 countries and territories, 1990-2019. European Journal of Preventive Cardiology, 29(2), 420–431. https://doi.org/10.1093/eurjpc/zwab213.
- Gibson, M. S., Domingues, N., & Vieira, O. V. (2018). Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis. Frontiers in Physiology, 9, 654. https://doi.org/10.3389/fphys.2018.00654.
- Shichiri, M., Ishimaru, S., Ota, T., Nishikawa, T., Isogai, T., & Hirata, Y. (2003). Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nature Medicine, 9(9), 1166–1172. https://doi.org/10.1038/nm913.
- Qian, K., Feng, L., Sun, Y., Xiong, B., Ding, Y., Han, P., Chen, H., Chen, X., Du, L., & Wang, Y. (2018). Overexpression of Salusin-α Inhibits Vascular Intimal Hyperplasia in an Atherosclerotic Rabbit Model. BioMed Research International, 8973986. https://doi.org/10.1155/2018/8973986.
- Sipahi, S., Genc, A. B., Acikgoz, S. B., Yildirim, M., Aksoy, Y. E., Vatan, M. B., Dheir, H., & Altındis, M. (2019). Relationship of salusin-alpha and salusin-beta levels with atherosclerosis in patients undergoing haemodialysis. Singapore Medical Journal, 60(4), 210–215. https://doi.org/10.11622/smedj.2018123.
- Watanabe, T., Suguro, T., Sato, K., Koyama, T., Nagashima, M., Kodate, S., Hirano, T., Adachi, M., Shichiri, M., & Miyazaki, A. (2008). Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertension research: Official Journal of Japanese Society of Hypertension, 31(3), 463–468. https://doi.org/10.1291/hypres.31.463.
- Wang, Y., Wang, S., Zhang, J., Zhang, M., Zhang, H., Gong, G., Luo, M., Wang, T., & Mao, X. (2020). Salusin-β is superior to salusin-α as a marker for evaluating coronary atherosclerosis. The Journal of International Medical Research, 48(2), 300060520903868. https://doi.org/10.1177/0300060520903868.
- Watanabe, T., Sato, K., Itoh, F., Iso, Y., Nagashima, M., Hirano, T., & Shichiri, M. (2011). The roles of salusins in atherosclerosis and related cardiovascular diseases. Journal of the American Society of Hypertension : JASH, 5(5), 359–365. https://doi.org/10.1016/j.jash.2011.06.003.
- Szostak, J., & Laurant, P. (2011). The forgotten face of regular physical exercise: a 'natural' anti-atherogenic activity. Clinical science (London, England: 1979), 121(3), 91–106. https://doi.org/10.1042/CS20100520.
- Sawyer, B. J., Tucker, W. J., Bhammar, D. M., Ryder, J. R., Sweazea, K. L., & Gaesser, G. A. (2016). Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. Journal of Applied Physiology (Bethesda, Md.: 1985), 121(1), 279–288. https://doi.org/10.1152/japplphysiol.00024.2016.
- Vella, C. A., Taylor, K., & Drummer, D. (2017). High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. European Journal of Sport Science, 17(9), 1203–1211. https://doi.org/10.1080/17461391.2017.1359679.
- Paahoo, A., Tadibi, V., Behpoor, N. (2020). Effect of Two Chronic Exercise Protocols on Pre-Atherosclerotic and Anti-Atherosclerotic Biomarkers Levels in Obese and Overweight Children. Iran J Pediatr, 30(2), e99760. https://doi.org/10.5812/ijp.99760.
- Paahoo, A., Tadibi, V., & Behpoor, N. (2021). Effectiveness of Continuous Aerobic Versus High-Intensity Interval Training on Atherosclerotic and Inflammatory Markers in Boys With Overweight/Obesity. Pediatric Exercise Science, 33(3), 132–138. https://doi.org/10.1123/pes.2020-0138.
- Nagashima, M., Watanabe, T., Shiraishi, Y., Morita, R., Terasaki, M., Arita, S., Hongo, S., Sato, K., Shichiri, M., Miyazaki, A., & Hirano, T. (2010). Chronic infusion of salusin-alpha and -beta exerts opposite effects on atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis, 212(1), 70–77. https://doi.org/10.1016/j.atherosclerosis.2010.04.027.
- Bruno, G., Cencetti, F., Pertici, I., Japtok, L., Bernacchioni, C., Donati, C., & Bruni, P. (2015). CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: Implications in the action mechanism of TGFβ. Biochimica et biophysica acta, 1851(2), 194–202. https://doi.org/10.1016/j.bbalip.2014.11.011.
- Watanabe, T., Nishio, K., Kanome, T., Matsuyama, T. A., Koba, S., Sakai, T., Sato, K., Hongo, S., Nose, K., Ota, H., Kobayashi, Y., Katagiri, T., Shichiri, M., & Miyazaki, A. (2008). Impact of salusin-alpha and -beta on human macrophage foam cell formation and coronary atherosclerosis. Circulation, 117(5), 638–648. https://doi.org/10.1161/CIRCULATIONAHA.107.712539.
- Ozelius, L. J., Page, C. E., Klein, C., Hewett, J. W., Mineta, M., Leung, J., Shalish, C., Bressman, S. B., de Leon, D., Brin, M. F., Fahn, S., Corey, D. P., & Breakefield, X. O. (1999). The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Genomics, 62(3), 377–384. https://doi.org/10.1006/geno.1999.6039.
- Izumiyama, H., Tanaka, H., Egi, K., Sunamori, M., Hirata, Y., & Shichiri, M. (2005). Synthetic salusins as cardiac depressors in rat. Hypertension (Dallas, Tex. : 1979), 45(3), 419–425. https://doi.org/10.1161/01.HYP.0000156496.15668.62.
- Yu, F., Zhao, J., Yang, J., Gen, B., Wang, S., Feng, X., Tang, C., & Chang, L. (2004). Salusins promote cardiomyocyte growth but does not affect cardiac function in rats. Regulatory Peptides, 122(3), 191–197. https://doi.org/10.1016/j.regpep.2004.06.013.
- Sato, K., Sato, T., Susumu, T., Koyama, T., & Shichiri, M. (2009). Presence of immunoreactive salusin-beta in human plasma and urine. Regulatory Peptides, 158(1-3), 63–67. https://doi.org/10.1016/j.regpep.2009.07.017.
- Ponticos, M., & Smith, B. D. (2014). Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. Journal of Biomedical Research, 28(1), 25–39. https://doi.org/10.7555/JBR.27.20130064.
- Xiao-Hong, Y., Li, L., Yan-Xia, P., Hong, L., Wei-Fang, R., Yan, L., An-Jing, R., Chao-Shu, T., & Wen-Jun, Y. (2006). Salusins protect neonatal rat cardiomyocytes from serum deprivation-induced cell death through upregulation of GRP78. Journal of CardiovascularP, 48(2), 41–46. https://doi.org/10.1097/01.fjc.0000242059.89430.ac.
- Saito, T., Dayanithi, G., Saito, J., Onaka, T., Urabe, T., Watanabe, T. X., Hashimoto, H., Yokoyama, T., Fujihara, H., Yokota, A., Nishizawa, S., Hirata, Y., & Ueta, Y. (2008). Chronic osmotic stimuli increase salusin-beta-like immunoreactivity in the rat hypothalamo-neurohypophyseal system: possible involvement of salusin-beta on [Ca2+]i increase and neurohypophyseal hormone release from the axon terminals. Journal of Neuroendocrinology, 20(2), 207–219. https://doi.org/10.1111/j.1365-2826.2007.01632.x.
- Aydin, S., & Aydin, S. (2014). Salusin-alpha and -beta expression in heart and aorta with and without metabolic syndrome. Biotechnic & Histochemistry: Official Publication of the Biological Stain Commission, 89(2), 98–103. https://doi.org/10.3109/10520295.2013.821167.
- Çakır, M., Sabah-Özcan, S., & Saçmacı, H. (2019). Increased level of plasma salusin-α and salusin-β in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 30, 76–80. https://doi.org/10.1016/j.msard.2019.02.003.
- Koya, T., Miyazaki, T., Watanabe, T., Shichiri, M., Atsumi, T., Kim-Kaneyama, J. R., & Miyazaki, A. (2012). Salusin-β accelerates inflammatory responses in vascular endothelial cells via NF-κB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro. American journal of physiology. Heart and Circulatory Physiology, 303(1), H96–H105. https://doi.org/10.1152/ajpheart.00009.2012.
- Zhou, C. H., Liu, L., Liu, L., Zhang, M. X., Guo, H., Pan, J., Yin, X. X., Ma, T. F., & Wu, Y. Q. (2014). Salusin-β not salusin-α promotes vascular inflammation in ApoE-deficient mice via the I-κBα/NF-κB pathway. PloS one, 9(3), e91468. https://doi.org/10.1371/journal.pone.0091468.
- Kimoto, S., Sato, K., Watanabe, T., Suguro, T., Koyama, T., & Shichiri, M. (2010). Serum levels and urinary excretion of salusin-alpha in renal insufficiency. Regulatory Peptides, 162(1-3), 129–132. https://doi.org/10.1016/j.regpep.2010.03.009.
- Sato, K., Koyama, T., Tateno, T., Hirata, Y., & Shichiri, M. (2006). Presence of immunoreactive salusin-alpha in human serum and urine. Peptides, 27(11), 2561–2566. https://doi.org/10.1016/j.peptides.2006.06.005.
- Kołakowska, U., Kuroczycka-Saniutycz, E., Wasilewska, A., & Olański, W. (2015). Is the serum level of salusin-β associated with hypertension and atherosclerosis in the pediatric population?. Pediatric Nephrology (Berlin, Germany), 30(3), 523–531. https://doi.org/10.1007/s00467-014-2960-y.
- Du, S. L., Wang, W. J., Wan, J., Wang, Y. G., Wang, Z. K., & Zhang, Z. (2013). Serum salusin-α levels are inversely correlated with the presence and severity of coronary artery disease. Scandinavian Journal of Clinical and Laboratory Investigation, 73(4), 339–343. https://doi.org/10.3109/00365513.2013.783227.
- Liu, J., Ren, Y. G., Zhang, L. H., Tong, Y. W., & Kang, L. (2015). Serum salusin-β levels are associated with the presence and severity of coronary artery disease. Journal of Investigative Medicine The Official Publication of the American Federation for Clinical Research, 63(4), 632–635. https://doi.org/10.1097/JIM.0000000000000184.
- Li, H. B., Qin, D. N., Suo, Y. P., Guo, J., Su, Q., Miao, Y. W., Sun, W. Y., Yi, Q. Y., Cui, W., Cheng, K., Zhu, G. Q., & Kang, Y. M. (2015). Blockade of Salusin-β in Hypothalamic Paraventricular Nucleus Attenuates Hypertension and Cardiac Hypertrophy in Salt-induced Hypertensive Rats. Journal of Cardiovascular Pharmacology, 66(4), 323–331. https://doi.org/10.1097/FJC.0000000000000284.
- Awad, A. Ali, H. Al-Rufaie, M. (2020). Assessment of serum levels of salusin α and salusin β in cardiovascular disease patients undergoing transcatheter therapy. Indian J Med Forensic Med Toxicol, 14(2), 303–308. doi:10.37506/ijfmt.v14i2.2807.
- Yildirim, A., & Kucukosmanoglu, M. (2021). Relationship between Serum Salusin Beta Levels and Coronary Artery Ectasia. Acta Cardiologica Sinica, 37(2), 130–137. https://doi.org/10.6515/ACS.202103_37(2).20200910A.
- Arkan, A., Atukeren, P., Ikitimur, B., Simsek, G., Koksal, S., Gelisgen, R., Ongen, Z., & Uzun, H. (2021). The importance of circulating levels of salusin-α, salusin-β, and heregulin-β1 in atherosclerotic coronary arterial disease. Clinical Biochemistry, 87, 19–25. https://doi.org/10.1016/j.clinbiochem.2020.10.003.
- Akyüz, A., Aydın, F., Alpsoy, Ş., Ozkaramanli Gur, D., & Guzel, S. (2019). Relationship of serum salusin beta levels with coronary slow flow. Anatolian Journal of Cardiology, 22(4), 177–184. https://doi.org/10.14744/AnatolJCardiol.2019.43247.
- Sato, K., Watanabe, R., Itoh, F., Shichiri, M., & Watanabe, T. (2013). Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. International Journal of Hypertension, 2013, 965140. https://doi.org/10.1155/2013/965140.
- Piko, N., Bevc, S., Hojs, R., & Ekart, R. (2023). Atherosclerosis and Epigenetic Modifications in Chronic Kidney Disease. Nephron, 147(11), 655–659. https://doi.org/10.1159/000531292.
- Sarwar, N., Danesh, J., Eiriksdottir, G., Sigurdsson, G., Wareham, N., Bingham, S., Boekholdt, S. M., Khaw, K. T., & Gudnason, V. (2007). Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation, 115(4), 450–458. https://doi.org/10.1161/CIRCULATIONAHA.106.637793.
- Celik, Ö., Yılmaz, E., Celik, N., Minareci, Y., Turkcuoglu, I., Simsek, Y., Celik, E., Karaer, A., & Aydin, S. (2013). Salusins, newly identified regulators of hemodynamics and mitogenesis, increase in polycystic ovarian syndrome. Gynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology, 29(1), 83–86. https://doi.org/10.3109/09513590.2012.706667.
- Grzegorzewska, A. E., Niepolski, L., Sikora, J., Janków, M., Jagodziński, P. P., & Sowińska, A. (2014). Effect of lifestyle changes and atorvastatin administration on dyslipidemia in hemodialysis patients: a prospective study. Polskie Archiwum Medycyny Wewnetrznej, 124(9), 443–451. https://doi.org/10.20452/pamw.2401.
- Tsimikas, S., Miyanohara, A., Hartvigsen, K., Merki, E., Shaw, P. X., Chou, M. Y., Pattison, J., Torzewski, M., Sollors, J., Friedmann, T., Lai, N. C., Hammond, H. K., Getz, G. S., Reardon, C. A., Li, A. C., Banka, C. L., & Witztum, J. L. (2011). Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression. Journal of the American College of Cardiology, 58(16), 1715–1727. https://doi.org/10.1016/j.jacc.2011.07.017.
- Hai, Z., & Zuo, W. (2016). Aberrant DNA methylation in the pathogenesis of atherosclerosis. Clinica Chimica Acta; International Journal of Clinical Chemistry, 456, 69–74. https://doi.org/10.1016/j.cca.2016.02.026.
- Sato, K., Fujimoto, K., Koyama, T., & Shichiri, M. (2010). Release of salusin-beta from human monocytes/macrophages. Regulatory Peptides, 162(1-3), 68–72. https://doi.org/10.1016/j.regpep.2010.02.010.
- Nakayama, C., Shichiri, M., Sato, K., & Hirata, Y. (2009). Expression of prosalusin in human neuroblastoma cells. Peptides, 30(7), 1362–1367. https://doi.org/10.1016/j.peptides.2009.03.021.
- Matei, D., Buculei, I., Luca, C., Corciova, C. P., Andritoi, D., Fuior, R., Iordan, D. A., & Onu, I. (2022). Impact of Non-Pharmacological Interventions on the Mechanisms of Atherosclerosis. International Journal of Molecular Sciences, 23(16), 9097. https://doi.org/10.3390/ijms23169097.
- Tucker, W. J., Fegers-Wustrow, I., Halle, M., Haykowsky, M. J., Chung, E. H., & Kovacic, J. C. (2022). Exercise for Primary and Secondary Prevention of Cardiovascular Disease: JACC Focus Seminar 1/4. Journal of the American College of Cardiology, 80(11), 1091–1106. https://doi.org/10.1016/j.jacc.2022.07.004.
- Price, K. J., Gordon, B. A., Bird, S. R., & Benson, A. C. (2016). A review of guidelines for cardiac rehabilitation exercise programmes: Is there an international consensus?. European Journal of Preventive Cardiology, 23(16), 1715–1733. https://doi.org/10.1177/2047487316657669.
- Nystoriak, M. A., & Bhatnagar, A. (2018). Cardiovascular Effects and Benefits of Exercise. Frontiers in Cardiovascular Medicine, 5, 135. https://doi.org/10.3389/fcvm.2018.00135.
- Myers J. (2003). Cardiology patient pages. Exercise and cardiovascular health. Circulation, 107(1), e2–e5. https://doi.org/10.1161/01.cir.0000048890.59383.8d.
- Daniela, M., Catalina, L., Ilie, O., Paula, M., Daniel-Andrei, I., & Ioana, B. (2022). Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants (Basel, Switzerland), 11(2), 350. https://doi.org/10.3390/antiox11020350.
- Goh, J., Goh, K. P., & Abbasi, A. (2016). Exercise and Adipose Tissue Macrophages: New Frontiers in Obesity Research?. Frontiers in Endocrinology, 7, 65. https://doi.org/10.3389/fendo.2016.00065.
- Kokkinos, P., & Myers, J. (2010). Exercise and physical activity: clinical outcomes and applications. Circulation, 122(16), 1637–1648. https://doi.org/10.1161/CIRCULATIONAHA.110.948349.
- Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., Macera, C. A., Heath, G. W., Thompson, P. D., Bauman, A., American College of Sports Medicine, & American Heart Association (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116(9), 1081–1093. https://doi.org/10.1161/CIRCULATIONAHA.107.185649.
- Nazari, M., Minasian, V., & Hovsepian, S. (2020). Effects of Two Types of Moderate- and High-Intensity Interval Training on Serum Salusin-α and Salusin-β Levels and Lipid Profile in Women with Overweight/Obesity. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy, 13, 1385–1390. https://doi.org/10.2147/DMSO.S248476.
- Aengevaeren, V. L., Mosterd, A., Sharma, S., Prakken, N. H. J., Möhlenkamp, S., Thompson, P. D., Velthuis, B. K., & Eijsvogels, T. M. H. (2020). Exercise and Coronary Atherosclerosis: Observations, Explanations, Relevance, and Clinical Management. Circulation, 141(16), 1338–1350. https://doi.org/10.1161/CIRCULATIONAHA.119.044467.
- DeFina, L. F., Radford, N. B., Barlow, C. E., Willis, B. L., Leonard, D., Haskell, W. L., Farrell, S. W., Pavlovic, A., Abel, K., Berry, J. D., Khera, A., & Levine, B. D. (2019). Association of All-Cause and Cardiovascular Mortality With High Levels of Physical Activity and Concurrent Coronary Artery Calcification. JAMA Cardiology, 4(2), 174–181. https://doi.org/10.1001/jamacardio.2018.4628.
- Aengevaeren, V. L., Mosterd, A., Bakker, E. A., Braber, T. L., Nathoe, H. M., Sharma, S., Thompson, P. D., Velthuis, B. K., & Eijsvogels, T. M. H. (2023). Exercise Volume Versus Intensity and the Progression of Coronary Atherosclerosis in Middle-Aged and Older Athletes: Findings From the MARC-2 Study. Circulation, 147(13), 993–1003. https://doi.org/10.1161/CIRCULATIONAHA.122.061173.
- Bahram, M. E., Afroundeh, R., Pourvaghar, M. J., Seify Skishahr, F., Katebi, L., Isik, O. (2023). The Effect of Combined Exercises and Consumption of Mulberry Leaf Extract on Serum Inflammatory Markers Level in Elderly Type 2 Diabetes Mellitus Men. IJDO, 15(3), 129-138. doi: 10.18502/ijdo.v15i3.13733.
- Bartlett, J. D., Close, G. L., MacLaren, D. P., Gregson, W., Drust, B., & Morton, J. P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. Journal of Sports Sciences, 29(6), 547–553. https://doi.org/10.1080/02640414.2010.545427.
|