تعداد نشریات | 8 |
تعداد شمارهها | 308 |
تعداد مقالات | 3,868 |
تعداد مشاهده مقاله | 7,623,251 |
تعداد دریافت فایل اصل مقاله | 2,749,645 |
مقایسه تاثیر تمرینات سنتی و تمرینات با حمایت وزن (BWST) بر تراکم استخوان افراد پاراپلژی | |
مطالعات طب ورزشی | |
مقاله 5، دوره 6، شماره 16، آذر 1393، صفحه 79-94 اصل مقاله (618.25 K) | |
نوع مقاله: مقاله پژوهشی | |
نویسندگان | |
ابراهیم بنی طالبی* 1؛ بهنام قاسمی مبارکه1؛ اسدالله ابراهیمی2؛ آرمان دهقانی2 | |
1دانشگاه شهرکرد | |
2کارشناس ارشد حرکات اصلاحی | |
چکیده | |
هدف از این پژوهش مقایسهتأثیر تمرینات سنتی و تمرینات با حمایت وزن بر تراکم استخوان و بیومارکرهای سرمی متابولیسم استخوان در افراد پاراپلژی است. تعداد 17 نفر ضایعه نخاعی پاراپلژی (طبقهبندی مقیاس B,C انجمن ضایعه نخاعی آمریکا) با میانگین ابتلا 14 ماه، سن 80/1±53/32 سال، قد 66/1±71/175 سانتیمتر، وزن 44/2±59/71 کیلوگرم و شاخص توده بدنی 83/0±18/23 کیلوگرم بر مترمربع بهطور دسترس و داوطلبانه بهعنوان آزمودنی انتخاب شدند. این آزمودنیها به گروه تمرین با حمایت وزن (10 نفر) و گروه تمرین سنتی (7 نفر) تقسیم شدند. آزمودنیها در یک دوره 12 هفتهای، 4 جلسه 60 دقیقهای در هفته شرکت کردند. تمرین با حمایت وزن شامل 15 دقیقه گرمکردن روی دوچرخه ثابت و سپس 45 دقیقه تمرین با 50% وزن بدن روی دستگاه نوار گردان و در آخر 10 دقیقه تمرینات سردکردن بود و در هر هفته 10% به وزن تحمل شده اضافه میشد. تمرینات سنتی شامل یک زمان 15 دقیقهای گرمکردن روی دوچرخه ثابت و 45 دقیقه تمرینات کششی و تمرینات قدرتی، راهرفتن با پارالل و 10 دقیقه سردکردن بود. دادهها نشان دادکه تفاوت معناداری در میزان آلکالین فسفات، استئوکلسین، میزان تغییرات محتوای استخوان گردن ران، تراکم استخوان گردن ران، میانگین محتوای استخوان مهرههای کمری و میانگین تراکم استخوان مهرههای کمری، بین گروه با حمایت وزن و گروه تمرینات سنتی وجود داشت. تمرین با حمایت وزن میتواند منجر به کاهش پوکی استخوان در افراد پاراپلژی گردد و بهعنوان یک مداخله مؤثر جهت درمان پوکی استخوان در این افراد تجویز گردد. | |
کلیدواژهها | |
تمرینات با حمایت وزن؛ تراکم استخوان؛ پاراپلژی | |
مراجع | |
1. Behrman, A. L. Nair, P. M., Bowden, M. G., Dauser, R. C., Herget, B. R., Martin, J. B., et al. (2008). Locomotor training restores walking in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury. Physical Therapy, 88(5), 580-590.
|
|
2. Carvalho, D., Garlipp, C., Bottini, P., Afaz, S., Moda, M., & Cliquet Jr, A. (2006). Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects. Brazilian journal of medical and biological research, 39(10), 1357-1363.
|
|
3. Carvalho, D. C. L., Garlipp, C. R., Bottini, P. V., Afaz, S. H., Moda, M. A., & Cliquet Jr, A. (2006). Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects. Brazilian journal of medical and biological research, 39(10), 1357-1363.
|
|
4. Coupaud, S., Jack, L., Hunt, K., & Allan, D. (2009). Muscle and bone adaptations after treadmill training in incomplete spinal cord injury: a case study using peripheral quantitative computed tomography. J Musculoskelet Neuronal Interact, 9(4), 288-297.
|
|
5. de Bruin, E. D., Frey-Rindova, P., Herzog, R. E., Dietz, V., Dambacher, M. A., & Stüssi, E. (1999). Changes of tibia bone properties after spinal cord injury: effects of early intervention. Archives of physical medicine and rehabilitation, 80(2), 214-220.
|
|
6. de Bruin, E. D., Frey-Rindova, P., Herzog, R. E., Dietz, V., Dambacher, M. A., & Stأ¼ssi, E. (1999). Changes of tibia bone properties after spinal cord injury: effects of early intervention. Archives of physical medicine and rehabilitation, 80(2), 214-220.
|
|
7. Fujimura, R., Ashizawa, N., Watanabe, M., Mukai, N., Amagai, H., Fukubayashi, T., et al. (1997). Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. Journal of Bone and Mineral Research, 12(4), 656-662.
|
|
8. Giangregorio, L., & McCartney, N. (2006). Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. The journal of spinal cord medicine, 29(5), 489.
|
|
9. Giangregorio, L. M., Webber, C. E., Phillips, S. M., Hicks, A. L., Craven, B. C., Bugaresti, J. M., et al. (2006). Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Applied physiology, nutrition, and metabolism, 31(3), 283-291.
|
|
10. Hicks, A., Adams, M., Ginis, K. M., Giangregorio, L., Latimer, A., Phillips, S., et al. (2005). Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord, 43(5), 291-298.
|
|
11. Hicks, A. L., & Ginis, K. A. M. (2008). Treadmill training after spinal cord injury: it's not just about the walking. Journal of rehabilitation research and development, 45(2), 241.
|
|
12. Hicks, A. L., & Ginis, K. M. (2008). Treadmill training after spinal cord injury: it's not just about the walking. Journal of rehabilitation research and development, 45(2), 241.
|
|
13. Hornby, T. G., Zemon, D. H., & Campbell, D. (2005). Robotic-assisted, body-weight–supported treadmill training in individuals following motor incomplete spinal cord injury. Physical therapy, 85(1), 52-66.
|
|
14. Ingram, R., Suman, R., & Freeman, P. (1989). Lower limb fractures in the chronic spinal cord injured patient. Spinal Cord, 27(2), 133-139.
|
|
15. Jacobs, P. L., & Nash, M. S. (2004). Exercise recommendations for individuals with spinal cord injury. Sports Medicine, 34(11), 727-751.
|
|
16. Joanne Bundonis, P. T., & Pcs, A. T. P. Benefits of Early Mobility with an Emphasis on Gait Training.
|
|
17. Kaya, K., Aybay, C., Ozel, S., Kutay, N., & Gokkaya, O. (2006). Evaluation of bone mineral density in patients with spinal cord injury. The journal of spinal cord medicine, 29(4), 396.
|
|
18. Kirshblum, S. C., Burns, S. P., Biering-Sorensen, F., Donovan, W., Graves, D. E., Jha, A., et al. (2011). International standards for neurological classification of spinal cord injury (revised 2011). The journal of spinal cord medicine, 34(6), 535-546.
|
|
19. Kirshblum, S. C., Burns, S. P., Biering-Sorensen, F., Donovan, W., Graves, D. E., Jha, A., et al. International standards for neurological classification of spinal cord injury (revised 2011). The journal of spinal cord medicine, 34(6), 535-546.
|
|
20. Koury, J., Passos, M., Figueiredo, F., Chain, A., & Franco, J. (2012). Time of physical exercise practice after injury in cervical spinal cord-injured men is related to the increase in insulin sensitivity. Spinal Cord.
|
|
21. Mohammad, F., Ebrahim, B., & Majid Cheragh, c. The effect of traditional and body weight supported training (BWSTT) exercises on serum Brain-Derived Neurotrophic Factor (BDNF) and motor function of paraplegic spinal cord injured persons. IJTRR, 3(2), 8-12.
|
|
22. Phillips, S. M., Stewart, B. G., Mahoney, D. J., Hicks, A. L., McCartney, N., Tang, J. E., et al. (2004). Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. Journal of applied Physiology, 97(2), 716-724.
|
|
23. Postma, K. (2005). Validity of the detection of wheelchair propulsion as measured with an Activity Monitor in patients with spinal cord injury. Spinal Cord, 43(9), 550-557.
|
|
24. Rahimi-Movaghar, V., Sayyah, M. K., Akbari, H., Khorramirouz, R., Rasouli, M. R., Moradi-Lakeh, M., et al. Epidemiology of traumatic spinal cord injury in developing countries: a systematic review. Neuroepidemiology, 41(2), 65-85.
|
|
25. Steeves, J., Lammertse, D., Curt, A., Fawcett, J., Tuszynski, M., Ditunno, J., et al. (2006). Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord, 45(3), 206-221.
|
|
26. Stewart, B. G., Tarnopolsky, M. A., Hicks, A. L., McCartney, N., Mahoney, D. J., Staron, R. S., et al. (2004). Treadmill training–induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle & nerve, 30(1), 61-68.
|