بررسی شاخصهای عملکردی متمایزکننده پیروزی و شکست در بسکتبال از طریق تحلیل شبکه اجتماعی | ||
رفتار حرکتی | ||
مقاله 4، دوره 17، شماره 59، اردیبهشت 1404، صفحه 101-120 اصل مقاله (703.4 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22089/mbj.2023.14645.2096 | ||
نویسندگان | ||
محمد مهدی خیرخیز1؛ بهروز عبدلی* 2؛ لورنزو لاپورتا3؛ علیرضا فارسی2 | ||
1دانشجوی دکتری، گروه علوم رفتاری، شناختی و فناوری ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران | ||
2استاد گروه علوم رفتاری، شناختی و فناوری ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران | ||
3استاد دانشکده تربیت بدنی، دانشگاه فدرال سانتا ماریا، برزیل | ||
چکیده | ||
ارتباط بین همتیمیها در ورزشهای تیمی دارای ویژگیهایی است که میتوان آنها را با تجزیه و تحلیل شبکههای اجتماعی بررسی کرد. هدف مطالعه حاضر بررسی شاخصهای عملکردی متمایزکننده پیروزی و شکست از طریق تحلیل شبکه اجتماعی در دو سطح میکرو (درجه مرکزیت، نزدیکی، میانگذری، بردار ویژه) و ماکرو (چگالی تیمی) بود؛ بر این اساس، 24 بازی تیم بسکتبال شیمیدر در رقابتهای لیگ برتر بسکتبال ایران به صورت نمونهگیری دردسترس انتخاب شد. این تیم متشکل از 12 بازیکن با میانگین سن 24 و انحراف معیار 5 ± بود که براساس شماره پیراهن شناسایی شدند. نتایج بهدستآمده در هفتههای منجر به پیروزی یا شکست تفاوت معناداری را بین شاخصهای درجه مرکزیت (001/0 P=، 95/12= (5،66)F) و بردار ویژه (025/0 P=، 77/2= (5،66)F) نشان داد (05/0P<). در تحلیل چگالی شبکههای موفق و ناموفق تفاوت معناداری بین شبکههای مختلف تیمی مشاهده نشد (05/0P>). همچنین درمورد نقش متمایز عملکرد موفق و ناموفق و تأثیر آن بر شبکه کلی تیمی نتایج نشان داد که تنها در شاخص درجه مرکزیت (001/0 P=،13/197= (2،69)F) اختلاف معنادار بود. نتایج پژوهش حاضر نشان داد، در بسکتبال درجه مرکزیت به موفقیت عملکرد تیم کمک میکند؛ چراکه بازیکنان توپ را به بهترین پخشکننده تیم پاس میدهند و سپس آن بازیکن تصمیم میگیرد توپ را به سمت کدام بازیکن به بهترین شکل هدایت کند. | ||
کلیدواژهها | ||
بسکتبال؛ شاخص عملکردی؛ تحلیل شبکه اجتماعی؛ تعاملات تیمی | ||
مراجع | ||
1. Lorenzo J, Lorenzo A, Conte D, Giménez M. Long-term analysis of elite basketball players’ game-related statistics throughout their careers. Frontiers in Psychology. 2019;10:421. https://doi.org/10.3389/fpsyg.2019.00421 2. Hughes MD, Bartlett RM. The use of performance indicators in performance analysis. Journal of sports sciences. 2002;20(10):739-54. https://doi.org/10.1080/026404102320675602 3. Bartlett R. Performance analysis: can bringing together biomechanics and notational analysis benefit coaches? International Journal of Performance Analysis in Sport. 2001;1(1):122-6. https://doi.org/10.1080/24748668.2001.11868254 4. Hughes M, Franks I. The essentials of performance analysis: an introduction: London: Routledge. https://doi.org/200710.4324/9780203938065 5. Dimitros E, Garopoulou V, Bakirtzoglou P, Maltezos C. Differences and discriminant analysis by location in A1 Greek women’s basketball league. Sport Science. 2013;6(1):33-7. https://doi.org/10.1080/054704102320675602 6. Leicht AS, Gomez MA, Woods CT. Team performance indicators explain outcome during women’s basketball matches at the Olympic Games. Sports. 2017;5(4):96. https://doi.org/10.3390/sports5040096 7. Koon Teck K, Wang C, Mallett C. Discriminating factors between successful and unsuccessful elite youth Olympic female basketball teams. International Journal of Performance Analysis in Sport. 2012;12(1):119-31. https://doi.org/10.1080/24748668.2012.11868588 8. Sampaio J, Janeira M, Ibáñez S, Lorenzo A. Discriminant analysis of game-related statistics between basketball guards, forwards and centres in three professional leagues. European Journal of Sport Science. 2006;6(3):173-8. https://doi.org/10.1080/17461390600676200 9. Conte D, Favero TG, Niederhausen M, Capranica L, Tessitore A. Determinants of the effectiveness of fast break actions in elite and sub-elite Italian men’s basketball games. Biology of Sport. 2017;34(2):177-83. https://doi.org/10.5114/biolsport.2017.65337 10. Trninić S, Dizdar D, Lukšić E. Differences between winning and defeated top quality basketball teams in final tournaments of European club championship. Collegium Antropologicum. 2002;26(2):521-31. https://doi.org/10.1108/17461390600676200 11. Mendes L, Janeira M. Basketball performance-multivariate study in Portuguese professional male basketball teams. Notational Analysis of sport–IV. 2001;103:111. https://doi.org/10.1080/054704102320675602 12. Tsamourtzis E, Salonikidis K, Taxildaris K, Mawromatis G. Technical and tactical characteristics of winners and losers in basketball. Leistungssport. 2002;32(1):54-8. https://doi.org/10.1080/054704102320675602 13. Lidor R, Arnon M. Developing indexes of efficiency in basketball: talk with the coaches in their own language. Kinesiology. 2000;32(2):31-41. https://doi.org/10.1016/j.socnet.2012.08.006 14. Sampaio J, Ibáñez S, Lorenzo A, Gómez M. Discriminative game-related statistics between basketball starters and nonstarters when related to team quality and game outcome. Perceptual and Motor Skills. 2006;103(2):486-94. https://doi.org/10.2466/pms.103.2.486-494 15. Zaccaro SJ, Rittman AL, Marks MA. Team leadership. The Leadership Quarterly. 2001;12(4): 451-83. https://doi.org/10.1016/S1048-9843(01)00093-5 16. Anderson C, Franks NR. Teams in animal societies. Behavioral Ecology. 2001;12(5):534-40. https://doi.org/10.1093/beheco/12.5.534 17. Vilar L, Araújo D, Davids K, Button C. The role of ecological dynamics in analysing performance in team sports. Sports Medicine. 2012;42:1-10. https://doi.org/10.2165/11596520-000000000-00000 18. Araújo D, Davids K. Team synergies in sport: theory and measures. Frontiers in psychology. 2016;7:1449. https://doi.org/10.3389/fpsyg.2016.01449 19. Pena JL, Touchette H. A network theory analysis of football strategies. arXiv preprint arXiv: 12066904.2012. https://doi.org/10.48550/arXiv.1206.6904 20. Gudmundsson J, Wolle T, editors. Football analysis using spatio-temporal tools. Proceedings of the 20th International Conference on Advances in Geographic Information Systems; 2012. https://doi.org/10.3389/fpsyg.2016.01449 21. Glazier PS. Game, set and match? Substantive issues and future directions in performance analysis. Sports Medicine. 2010;40:625-34. 10.2165/11534970-000000000-00000 22. Latash ML, Gorniak S, Zatsiorsky VM. Hierarchies of synergies in human movements. Kinesiology (Zagreb, Croatia). 2008;40(1):29. https://doi.org/10.2566/pms.103.2.486-494 23. Komar J, Seifert L, Thouvarecq R. What variability tells us about motor expertise: measurements and perspectives from a complex system approach. Movement & Sport Sciences-Science & Motricité. 2015;(89):65-77. https://doi.org/10.1051/sm/2015020 24. Cummings JN, Cross R. Structural properties of work groups and their consequences for performance. Social Networks. 2003 25(3):197-210. https://doi.org/10.1016/S0378-8733(02)00049-7 25. Warner S, Bowers MT, Dixon MA. Team dynamics: A social network perspective. Journal of Sport Management. 2012;26(1):53-66. https://doi.org/10.1123/jsm.26.1.53 26. Gaston ME, DesJardins M. The effect of network structure on dynamic team formation in multi‐agent systems. Computational Intelligence. 2008; 24(2):122-57. https://doi.org/10.1111/j.1467-8640.2008.00325 27. Vazquez-Guerrero J, Fernández-Valdés B, Jones B, Moras G, Reche X, Sampaio J. Changes in physical demands between game quarters of U18 elite official basketball games. PLoS One. 20193;14(9):e0221818. https://doi.org/10.1371/journal.pone.0221818 28. Pollard R, Pollard G. Home advantage in soccer: a review of its existence and causes. 2005. https://doi.org/10.3389/fpsyg.2016.01449 29. Praça G, Diniz L, Clemente F, Bredt SGT, Couto B, Andrade A, et al. The influence of playing position on the physical, technical, and network variables of sub-elite professional soccer athletes. Human Movement. 2021;22(2):22-31. https://doi.org/10.1371/journal.pone.0198888 30. Grund TU. Network structure and team performance: The case of English Premier League soccer teams. Social Networks. 2012; 34(4):682-90. https://doi.org/10.1016/j.socnet.2012.08.004 31. Travassos B, Davids K, Araújo D, and Esteves TP. Performance analysis in team sports: Advances from an Ecological Dynamics approach. International Journal of Performance Analysis in Sport. 2013;13(1):83-95. https://doi.org/10.1080/24748668.2013.11868633 32. Correia V, Araújo D, Duarte R, Travassos B, Passos P, Davids K. Changes in practice task constraints shape decision-making behaviours of team games players. Journal of Science and Medicine in Sport. 2012;15(3): 244-9. https://doi.org/10.1016/j.jsams.2011.10.004 33. Ramos J, Lopes RJ, Araújo D. What’s next in complex networks? Capturing the concept of attacking play in invasive team sports. Sports Medicine. 2018;48(1):17-28. https://doi.org/10.1007/s40279-017-0786-z 34. Clemente FM, Couceiro MS, Martins FML, Mendes RS. Using network metrics in soccer: a macro-analysis. Journal of Human Kinetics. 2015; 45:123. https://doi.org/10.1515/hukin-2015-0013 35. Bonacich P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology. 1972; 2(1):113-20. https://doi.org/10.1080/0022250X.1972.9989806 36. Balkundi P, Harrison DA. Ties, leaders, and time in teams: Strong inference about network structure’s effects on team viability and performance. Academy of Management Journal. 2006;49(1):49-68. https://doi.org/10.5465/amj.2006.20785500 37. Wasserman S, Faust K. Social network analysis: Methods and applications. Published by the Press Syndicate of the University of Cambridge; 1994. https://doi.org/10.1017/CBO9780511815478 38. Fewell JH, Armbruster D, Ingraham J, Petersen A, Waters JS. Basketball teams as strategic networks. PloS one. 2012;7(11):e47445. https://doi.org/10.1371/journal.pone.0047445 39. Xu CK. Social Network Analysis of College and Professional Basketball (Doctoral dissertation). 2018. https://doi.org/10.1017/CBO9780511815478 40. Diambra NJ. Using topological clustering to identify emerging positions and strategies in NCAA men’s basketball. 2018. https://doi.org/10.1017/O9780511815478 41. Sparrowe RT, Liden RC, Wayne SJ, Kraimer ML. Social networks and the performance of individuals andgroups.Academyofmanagementjournal.2001;44(2):316-25. https://doi.org/10.5465/3069458 42. Leavitt HJ. Some effects of certain communication patterns on group performance. The Journal of Abnormal and Social Psychology. 1951;46(1):38. https://doi.org/10.1037/h0057189 43. Rose T. The end of average: How to succeed in a world that values sameness. Penguin UK; 2016. https://doi.org/10.1236/h0057189 44. Pena JL, Touchette H. A network theory analysis of football strategies. arXiv preprint arXiv:1206.6904. 2012. https://doi.org/10.48550/arXiv.1206.6904 45. Gonçalves B, Coutinho D, Santos S, Lago-Penas C, Jiménez S, Sampaio J. Exploring team passing networks and player movement dynamics in youth association football. PloS one. 2017;12(1):e0171156. https://doi.org/10.1371/journal.pone.0171156 46. Sasaki K, Yamamoto T, Miyao M, Katsuta T, Kono I. Network centrality analysis to determine the tactical leader of a sports team. International Journal of Performance Analysis in Sport. 2017;17(6):822-31. https://doi.org/10.1080/24748668.2017.1402283 47. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP. Network centrality in the human functional connectome. Cerebral cortex. 2012;22(8):1862-75. https://doi.org/10.1093/cercor/bhr269 48. Pina TJ, Paulo A, Araújo D. Network characteristics of successful performance in association football. A study on the UEFA champions league. 2017. https://doi.org/10.3389/fpsyg.2017.01173 49. Hughes M, Franks I. Analysis of passing sequences, shots and goals in soccer. Journal of sports sciences. 2005;23(5):509-14. https://doi.org/10.1080/02640410410001716779 50. Karipidis A, Mavridis G, Tsamourtzis E, Rokka S. The effectiveness of control offense, following an outside game in European Championships. Inquiries in Sport & Physical Education. 2010;8(1):99-106. https://doi.org/10.26253/heal.uth.ojs.ispe.2010.1347
| ||
آمار تعداد مشاهده مقاله: 499 تعداد دریافت فایل اصل مقاله: 2 |
تعداد نشریات | 9 |
تعداد شمارهها | 334 |
تعداد مقالات | 4,100 |
تعداد مشاهده مقاله | 8,608,460 |
تعداد دریافت فایل اصل مقاله | 3,105,007 |