- O’Connor SM, Kuo AD. Direction-dependent control of balance during walking and standing. J Neurophysiol. 2009;102(3):1411–9.
- Patla AE. Understanding the roles of vision in the control of human locomotion. Gait and Posture. 1997;5:54–69.
- Jahn K, Strupp M, Schneider E, Dieterich M, Brandt T. Visually induced gait deviations during different locomotion speeds. Exp Brain Res. 2001;141(3):370–4.
- Matthis JS, Yates JL, Hayhoe MM. Gaze and the control of foot placement when walking in natural terrain. Curr Biol. 2018;28(8):1224-1233.e5.
- Hallemans A, Beccu S, Van Loock K, Ortibus E, Truijen S, Aerts P. Visual deprivation leads to gait adaptations that are age- and context-specific: I. Step-time parameters. Gait Posture. 2009;30(1):55–9.
- Stokes HE, Thompson JD, Franz JR. The Neuromuscular Origins of Kinematic Variability during Perturbed Walking. Sci Rep. 2017;7(1):808.
- Hallemans A, Beccu S, Van Loock K, Ortibus E, Truijen S, Aerts P. Visual deprivation leads to gait adaptations that are age- and context-specific: II. Kinematic parameters. Gait Posture. 2009;30(3):307–11.
- Iosa M, Fusco A, Morone G, Paolucci S. Effects of visual deprivation on gait dynamic stability. Sci World J. 2012;2012:1–7.
- Cho S-Y, Ryu Y-U, Je HD, Jeong JH, Ma S-Y, Kim H-D. Effects of illumination on toe clearance and gait parameters of older adults when stepping over an obstacle: A pilot study. J Phys Ther Sci. 2013;25(3):229–32.
- Rhea CK, Rietdyk S. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory. Neurosci Lett. 2007;418(1):60–5.
- Rietdyk S, Rhea CK. Control of adaptive locomotion: Effect of visual obstruction and visual cues in the environment. Exp Brain Res. 2006;169(2):272–8.
- Rietdyk S, McGlothlin JD, Williams JL, Baria AT. Proactive stability control while carrying loads and negotiating an elevated surface. Exp Brain Res. 2005;165(1):44–53.
- Chambers AJ, Cham R. Slip-related muscle activation patterns in the stance leg during walking. Gait Posture. 2007;25(4):565–72.
- Patla AE. Strategies for dynamic stability during adaptive human locomotion. IEEE engineering in medicine and biology magazine. 2003;22(2):48–52.
- Hollman JH, Brey RH, Bang TJ, Kaufman KR. Does walking in a virtual environment induce unstable gait? Gait Posture. 2007;26(2):289–94.
- Oliveira AS, Schlink BR, Hairston WD, König P, Ferris DP. Restricted vision increases sensorimotor cortex involvement in human walking. J Neurophysiol. 2017;118(4):1943–51.
- Moe-Nilssen R, Helbostad JL, Åkra T, Birkedal L, Nygaard HA. Modulation of gait during visual adaptation to dark. J Mot Behav. 2006;38(2):118–25.
- Houwen S, Visscher C, Lemmink KAPM, Hartman E. Gross motor skills and sports participation of children with visual impairments. Res Q Exerc Sport. 2007;78(2):16–23.
- Jongprasithporn M. The age-related effects of visual input on multi-sensory weighting process during locomotion and unexpected slip perturbations [Unpublishd doctoal dissertaion]. [Blacksburg, VA ]: the Virginia Polytechnic Institute and State University i; 2011.
- Dubreucq L, Mereu A, Blanc G, Filiatrault J, Duclos C. Introducing a psychological postural threat alters gait and balance parameters among young participants but not among most older participants. Exp Brain Res. 2017;235(5):1429–38.
- Lauzière S, Miéville C, Betschart M, Duclos C, Aissaoui R, Nadeau S. A more symmetrical gait after split-belt treadmill walking increases the effort in paretic plantar flexors in people post-stroke. J Rehabil Med. 2016;48(7):576–82.
- Ijmker T, Houdijk H, Lamoth CJC, Beek PJ, van der Woude LHV. Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed. J Biomech. 2013;46(13):2109–14.
- Hallemans A, Ortibus E, Meire F, Aerts P. Low vision affects dynamic stability of gait. Gait Posture. 2010;32(4):547–51.
- D’Hondt E, Segers V, Deforche B, Shultz SP, Tanghe A, Gentier I, et al. The role of vision in obese and normal-weight children’s gait control. Gait Posture. 2011;33(2):179–84.
- Hurt CP, Rosenblatt N, Crenshaw JR, Grabiner MD. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults. Gait Posture. 2010;31(4):461–4.
- Espy DD, Yang F, Bhatt T, Pai YC. Independent influence of gait speed and step length on stability and fall risk. Gait Posture. 2010;32(3):378–82.
- Hollman JH, Brey RH, Robb RA, Bang TJ, Kaufman KR. Spatiotemporal gait deviations in a virtual reality environment. Gait Posture. 2006;23(4):441–4.
- McAndrew PM, Wilken JM, Dingwell JB. Dynamic stability of human walking in visually and mechanically destabilizing environments. J Biomech. 2011;44(4):644–9.
- McAndrew PM, Dingwell JB, Wilken JM. Walking variability during continuous pseudo-random oscillations of the support surface and visual field. J Biomech. 2010;43(8):1470–5.
- Bauby CE, Kuo AD. Active control of lateral balance in human walking. J Biomech. 2000;33(11):1433–40.
- Donelan JM, Shipman DW, Kram R, Kuo AD. Mechanical and metabolic requirements for active lateral stabilization in human walking. J Biomech. 2004;37(6):827–35.
- Anson E, Agada P, Kiemel T, Ivanenko Y, Lacquaniti F, Jeka J. Visual control of trunk translation and orientation during locomotion. Exp Brain Res. 2014;232(6):1941–51.
- Grillner S, Wallen P. Central Pattern Generators for Locomotion, with Special Reference to Vertebrates. Annu Rev Neurosci. 1985;8(1):233–61.
- Forssberg H. Spinal locomotor functions and descending control. In: Brainstem control of spinal mechanisms. Netherlands: Elsevier Biomedical Amsterdam; 1982. p. 253–71.
- Hallemans A, Ortibus E, Truijen S, Meire F. Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil. 2011;32(6):2069–74.
- Patla AE, Davies TC, Niechwiej E. Obstacle avoidance during locomotion using haptic information in normally sighted humans. Exp Brain Res. 2004;155(2):173–85.
- Bugnariu N, Fung J. Aging and selective sensorimotor strategies in the regulation of upright balance. J Neuroeng Rehabil. 2007;4(1):19.
- Franz JR, Francis CA, Allen MS, O’Connor SM, Thelen DG. Advanced age brings a greater reliance on visual feedback to maintain balance during walking. Hum Mov Sci. 2015;40:381–92.
|