Research Paper

Effect of Aerobic Exercise and Ethanol Consumption on Nrf2 Gene Expression in Heart Tissue and Some Antioxidant Indices in Male Rats

Z. Farajtabar¹, R. Fathi², K. Nasiri ⁴, F. Ahmadi ⁵

1. M.Sc. Graduate in Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
2. Professor, Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran (Corresponding Author)
3. Assistance Professor, Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
4. Ph.D. Graduate in Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran

Received: 2019/07/11 Accepted: 2019/09/16

Abstract

There have been limited studies on the effect of the combination of aerobic exercise and alcohol consumption on regulators of antioxidant defense systems, especially erythroid nuclear factor 2 associated with factor 2 (Nrf2) in heart muscle. The aim of this study was to investigate the effect of eight-week aerobic exercise with ethanol consumption on Nrf2 gene expression in heart tissue and antioxidant parameters of plasma in male rats. Totally, 32 rats with an average weight of 230 ± 6 g were divided into four groups including control, aerobic exercise, ethanol 20% at a dose of 4 g/kgbw, and ethanol+ aerobic exercise. At the end of the period, levels of Nrf2 gene expression, total antioxidant capacity (TAC) and malondialdehyde (MDA) were evaluated. Data were analyzed by two-way ANOVA at the significant level of p≤0.05. The results showed that aerobic exercise had a significant effect on Nrf2 gene expression (P=0.0068). The results suggested no significant effect of ethanol consumption (P=0.312) and interaction effect between aerobic exercise and ethanol consumption (P=0.237) on Nrf2 gene expression. Aerobic exercise significantly increased the expression of Nrf2 gene in the aerobic exercise and ethanol+ aerobic exercise groups compared to the control. Ethanol consumption significantly reduced TCA and increased MDA levels compared to other groups. The findings suggested that ethanol consumption was decreased and plasma levels of TAC and MDA were increased, respectively. In contrast, aerobic exercise through increasing TAC and Nrf2 gene expression levels led to a decrease in the oxidative damage caused by ethanol consumption.

Keywords: Ethanol, Aerobic Exercise, Erythroid Nuclear Factor 2 Related to Factor (2) (Nrf2), Gene Expression, Antioxidant

1. Email: roz_fathi@yahoo.com; r.fathi@umz.ac.ir
2. Email: z.farajtabar19@gmail.com
3. Email: kh.nasiri@umz.ac.ir
4. Email: farhadahmadi19@yahoo.com
Extended Abstract

Background and Purpose
There have been limited studies on the effect of the combination of aerobic exercise and alcohol consumption on regulators of antioxidant defense systems, especially erythroid nuclear factor 2 associated with factor 2 (Nrf2) in heart muscle. The transcription factor Nrf2 is a major regulator of antioxidant proteins (1). Nrf2 is expressed in all tissues of the body, but most strongly in the heart, brain, kidney, muscle, lung, and liver (2). Regulation of Nrf2 transcription factor is affected by various factors including exercise (3). Physical activity has been suggested as a useful non-pharmacological approach to modulate gene expression of this antioxidant pathway, especially in the heart muscle. The aim of this study was to investigate the effect of eight-week aerobic exercise on the damages caused by 20% ethanol consumption on oxidative stress indices (malondialdehyde (MDA) and total capacity antioxidant (TAC)) in plasma and Nrf2 gene expression in the heart tissue in rats.

Materials and Methods
Totally, 32 male rats with an average weight of 230 ± 6 g were divided into four groups including control, aerobic exercise, ethanol 20% at a dose of 4 g/kgbw and ethanol+aerobic exercise. All groups were anesthetized with an intraperitoneal injection of ketamine (30-50 mg/kg body weight) and xylazine (3-5 m /kg body weight) 48 hours after the last ethanol ingestion and exercise session during overnight fasting. The blood sample was taken from the liver vein, and immediately the heart tissue was collected and frozen at -80°C. The whole RNA was extracted from the heart tissue of different rat groups. The extracted RNA samples were used for cDNA synthesis after genomic contamination with DNaseI, RNase-free enzyme (Sinaclone, Iran). Nrf2 gene expression was evaluated using real-time PCR performed using SYBER Green qPCR Master Mixes (Ampliqon, Denmark) in Rotor gene 6000 (Corbett). Real-time PCR reactions were conducted in a final volume of 20 µl and each reaction was performed duplicate. The reaction mixture consisted of 3 µl cDNA (50 ng/µl), 8 µL RealQ Plus 2x Master Mix Green (Amplioqon, Denmark), 0.4 µL of each specific primer (10 pmol), and 8.2 µL of DNase/RNase free water. PCR in real-time was applied with the following primers: Forward: 5'- GCTGCCATTAGTCAGTCGCTCTC -3' and Reverse: 5'-ACCGTGCGCTTCAGTGCTTTC -3' for the rat Nrf2 gene (4) and Forward: 5'-GGCAAGTTCAACGGCACAG -3' and Reverse: 5'-GACGCCAGTAGACTCCACGAC -3' for the rat GAPDH gene. Relative gene expression was quantified by the 2^ΔΔct method. Plasma TAC was determined by the ferric reducing antioxidant power assay proposed by Benzi et al. (1996) (5), and MDA was measured using the thiobarbituric acid method (6). Graph Pad
Prism 6.07 was applied for data analysis. Data were analyzed through two-way ANOVA analysis at the significant level of \(p \leq 0.05 \).

Result

The results showed that aerobic exercise had a significant effect on Nrf2 gene expression (\(P = 0.0068 \)). The findings indicated no significant effect of ethanol consumption (\(P = 0.312 \)) and interaction effect between aerobic exercise and ethanol consumption (\(P = 0.237 \)) on Nrf2 gene expression. Aerobic exercise significantly increased the expression of Nrf2 gene in the aerobic exercise and ethanol+ aerobic exercise groups compared to the control group (\(p \leq 0.05 \)). In the current study, TAC was measured as an estimate of the potential composition of different antioxidants in the body. The results of two-way ANOVA analysis suggested that the effect of aerobic exercise (\(P = 0.013 \)) and ethanol consumption (\(P = 0.024 \)), as well as the interaction effect between aerobic exercise and ethanol consumption (\(P = 0.0005 \)) were significant for TAC. The results of Tukey's post-hoc test demonstrated that ethanol consumption significantly decreased TAC in the ethanol group compared to the other groups. The TAC decreased significantly in the ethanol group (0.0809ng/mgProtein) compared with the control group (1.121ng/mgProtein) (\(p \leq 0.01 \)) and the exercise group (0.825ng/mgProtein) (\(p \leq 0.05 \)). Moreover, TAC increased significantly (\(p \leq 0.01 \)) in ethanol+ aerobic exercise group (1.172ng/mgProtein) compared with the ethanol group. In the present study, MDA was measured as an index for lipid peroxidation. The results of the two-way ANOVA analysis showed that the effect of aerobic exercise (\(P = 0.0001 \)), ethanol consumption (\(P = 0.0001 \)) and interaction effect between aerobic exercise and consumption ethanol (\(P = 0.0001 \)) was significant for plasma MDA levels. The results of Tukey's post hoc test showed that ethanol consumption significantly increased MDA in the ethanol group compared to other groups. The amount of MDA in the ethanol group was 0.365ng/mgProtein which was significantly increased compared with the control group (0.149ng/mgProtein) (\(p \leq 0.0001 \)). The level of MDA in the aerobic exercise group was 0.104 ng/mgProtein, which was significantly decreased compared to the ethanol group (\(p \leq 0.0001 \)) and the control group (\(p \leq 0.05 \)). Further, the MDA in the ethanol + aerobic exercise group was 0.128 ng/mg Protein, which was significantly decreased compared to the ethanol group (\(p \leq 0.0001 \)). The present study evaluated the combined effects of physical exercise and chronic ethanol consumption and concluded that alcohol consumption might increase cardiac MDA and reduce myocardial antioxidant potential. Like the ongoing study, Benzie et al. (6) suggested that resistance exercise could reduce the harmful effects of alcohol on the heart and improve the heart's capacity antioxidant. Regular exercise might improve the damage caused by oxidative stress and reduce lipid peroxidation
through adaptations created by the expression level of genes controlling antioxidant defense systems.

Conclusion

The findings of the present study showed that ethanol consumption was decreased and TAC and MDA levels in plasma were increased. In contrast, aerobic exercise through increasing TAC levels in plasma and Nrf2 gene expression levels led to a decrease in the oxidative damage caused by ethanol consumption. On the other hand, the results of the current study illustrated that regular aerobic exercise combined with ethanol consumption improved ethanol-induced oxidative damage. Regular and moderate exercise seems to maintain health and reduce the risk of cardiovascular disease not only by modulating some of the genes that control cell oxidation/reduction status but also by improving the performance of the cardiovascular system via various mechanisms. If the positive effects of the current study are repeated in human subjects, regular aerobic exercise may have therapeutic potential to counter the harmful effects of chronic alcohol usage.

Keywords: Ethanol, Aerobic exercise, Erythroid nuclear factor 2 related to factor (2) (Nrf2), Gene expression, Antioxidant

References

مطالعه معنادوستی درباره تأثیر ترکیب تمرینات ورزشی و مصرف الکل بر تغییرات Nrf2 در عضله قلب و برخی از شاخص‌های آنتی‌اکسیدانی موس صحرایی نر

رهنمای صحرایی نر 240 کرم به چهار گروه کنترل، تمرین هوازی و اتانول گم به کیلوگرم وزن دادند. نتایج نشان داد که مصرف اتانول به کاهش Nrf2 در گروه اکسیدانی موش صحرایی نر تأثیر گذاشت. البته این تأثیر به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان داد که مصرف اتانول به کاهش تعداد ژن Nrf2 نسبت به ژن Nrf2 در گروه کنترل نشان داد. نتایج نشان D

1. Email: roz_fathi@yahoo.com; t.fathi@umz.ac.ir
2. Email: z.farajtabar19@gmail.com
3. Email: kh.nasiri@umz.ac.ir
4. Email: farhadahmadi19@yahoo.com
مقدمه

الکل، یکی از شناخته‌شده‌ترین نوشیدنی‌های کلی است که به‌طور خودکار در جمعیت انسان به‌طور متوسط مصرف می‌شود. به‌طور فردی و گروه‌ای، یکی از منابع شایع آسیب‌ها و بیماری‌ها می‌باشد. در حال حاضر، بیش از ۱۴۰ هزار میلیون نفر به مصرف مزمن و حاد الکل وابسته هستند. محققان تأثیرات سوء استفاده از الکل برگزاری کار، بیماری‌ها و در مقایسه با افرادی که به الکل نمی‌پردازند بررسی کرده‌اند. در این مقاله، تأثیرات سوء استفاده از الکل بر روی سلامت جهان به‌طور کلی بررسی می‌گردد.

1. World Health Organization (WHO)
 واکنش‌پذیری اکسیژن به‌دنبال تخلیه آنتی‌اکسیدان‌های افزایش تولید ROS نشان داده شده است. علاوه بر دیگر آلاینده‌ها، ROS به‌طور عمومی محبوبیت مانند ال‌اب‌پلیکی، که در زمینه‌های مصرف دخانیات و مصرف الکل نیز صورت می‌گیرد، ضعیف قلب یکی از نتایج مستعد برای پروژه شمال‌های اکسیداتیو تولید می‌شود و به هیدروکسیکسیل انتقال می‌دهد (9).

هنگامی که استرس اکسیداتیو روی می‌دهد، سطح ROS برای ایجاد ضرر با اثرات اکسیدانت‌کننده‌ها ناشی از تسلط ویک کننده در طی فعالیت کردن با خاموشی کردن زن‌های رژیم‌داری فاکتورهای روتوبیس، آنزیم‌های آنتی‌اکسیدان و پروتئین‌های ساختاری، تعادل را بازیابی کند. یکی از مهم‌ترین اکتیویهای روتوبیس قدرت‌مندی کندنده اکسیداسیون/احیا سلول‌های فاکتور هسته‌ای از طریق یک راهکار اکسیدانی و افزایش تولید ROS دو (فاکتور روتوبیس Nrf2) است که از طریق تولید بیش از حد ROS اکسیداتیو در همه بافت‌های بدن بیشترین می‌شود و سبب تولید آنزیم‌ها و پروتئین‌های آنتی‌اکسیدان و سایتکین‌های پیش‌اندازه می‌شود (10).

فاکتور روتوبیس Nrf2 تنظیم کننده اصلی پروتئین‌های آنتی‌اکسیدانی است و بیش از ۲۰۰ زن‌روتوپین سلول‌ها را در پاسخ به استرس اکسیداتیو تنظیم می‌کند (11). فاکتور روتوبیس Nrf2 در همه بافت‌های بدن بیشترین می‌شود. اما بیشترین بیان آن در قلب، مغز، کلیه، ماهیچه، شنو و کبد است (12).

 تنظیم بیان فاکتور روتوبیس Nrf2 تحت تأثیر عوامل مختلفی ازجمله ورزش است (13). این فعالیت در شرایط مختلف می‌تواند یک راهکار غیر طبیعی باشد. باید تحت تأثیر عوامل مختلفی ازجمله ورزش است (13)؛ این فعالیت تحت تأثیر عوامل مختلفی ازجمله ورزش است (13).

به‌عنوان یک راهکار غیر طبیعی می‌شود. باید تحت تأثیر عوامل مختلفی ازجمله ورزش است (13).

درباره فعالیت روتوپین Nrf2 این اتفاق بر می‌آید که در هر شرایط برای بهبود وضعیت استرس اکسیداتیو ضروری است که در سلول‌های می‌شود. در همین راستا نیازهای فراوانی با هدف تجربی رواج بین مواد آنتی‌اکسیدان و محصولات استرس اکسیداتیو در شرایط مختلف تمرینی انجام شده‌اند. بررسی‌هایی نشان می‌دهد که تمرین‌های ورزشی با وضعیت استرس اکسیداتیو مرتبط است (15). بنابراین عوامل دارد که تمرینات شدید، تناسب و طولانی مدت فراوانی با هدف تعیین روابط بین مواد آنتی‌اکسیدان و محصولات استرس اکسیداتیو در شرایط مختلف تمرینی انجام شده‌اند. بررسی‌هایی نشان می‌دهد که تمرین‌های ورزشی با وضعیت استرس اکسیداتیو مرتبط است (15).

به‌عنوان یک راهکار غیر طبیعی می‌شود. باید تحت تأثیر عوامل مختلفی ازجمله ورزش است (13).

درباره فعالیت روتوپین Nrf2 این اتفاق بر می‌آید که در هر شرایط برای بهبود وضعیت استرس اکسیداتیو ضروری است که در سلول‌های می‌شود. در همین راستا نیازهای فراوانی با هدف تجربی رواج بین مواد آنتی‌اکسیدان و محصولات استرس اکسیداتیو در شرایط مختلف تمرینی انجام شده‌اند. بررسی‌هایی نشان می‌دهد که تمرینات شدید، تناسب و طولانی مدت

1. Reactive Oxygen Species (ROS)
2. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)
تمرينات ورزشي منظم مي تواند استرس اکسيدانيو عضله قلبی را كاهش دهد و سيستم آنتي اکسيدان را تقویت كند و افزایش استرس اکسيدانی ناشی از بیماری در قلب را نیز کنترل كند (13). اثرات تمرین را بدنی و وضعیت اکسيدانی تأثیر گذاری ماند. قلب، لمغز، عضلات و كليه برسي شده است و علائم براین بررسی هاي زبيدي در حيطة اثر دوره های متقارن اتانول بر شاخه هاي استرس اکسيدانی انجام گرفته است. با ين اغلب بررسی پيشينه اين حوزه، مطالعات محدودي با اعمال هر دو متغير الگو و تمرين با شدت متوسط و وضعیت اکسيدانی پافت قلب انجام شدهاند. همچنين تاکنون مطالعات محدودي درباره تقویت سيستم آنتي اکسيدانی با وسعت آن وابسته بر بحث بردارن زن در قلب انجام گرفتهاند. بنابراین اين پژوهش با هدف بررسی اثر تمرین هوازي با شدت متوسط بر آسپیروفانت ناشی از مصرف اتانول 20 درصد بر شاخه هاي استرس اکسيدانی (مالوندی أکسید 1 و Nrf2) در عضله قلبی موش هاي صحرايي نر انجام مي شود.

روش پژوهش

روش پژوهش خلاصي با توجه به ماهيت و اهداف آن از نوع تجريبي و بينبدي بود. در اين مطالعه سر موس صحرايي نر نزاد و پستان با ميانگين وزني 60 ± 20 گرم و سن متوسط هفته ها، در محيط يا دماي 22 درجه سلسوس، رطوبتي 25 ± 5 درصد و چرخه تاریکي-روشنایي 12:12 ساعت-نگهداري شدند. در طول دوره پژوهش حيوانات به مصرف آب و غذاي مخصوص موش (ساخت شركت هيبرو-يژن) دسترسي آزاد داشتند. حيوانات پس از يك هفته آشنابي به محيط نگهداري جديد و نهوا فعاليت روی تردميل بهطور تصادفي به چهار گروه كنترل، آتانول، تمرین و آتانول + آتانول تقسيم شدند.

پروتوكول تمرین: هشته هفته تمرين هوازي با يک دوره آتشناسي يك هفته حيوانات با دويدن روي تردميل آغاز شد. در طي دوره آتشناسي گروه يكي تمریني هفته ها سه جلسه با سرعت 10 متر بر دقیقه همدت 10 دقیقه تمرین داده شدند. پس از دوره سازگاري آزمون خستگي به موانع تعيين جدري سرعت دويدن اجرا شد. اين آزمون به شرح زير انجام شد:

1. Malondialdehyde
2. Total Antioxidant Capacity (TAC)
سپس ۶۵ درصد حداکثر سرعت محاسبه شد که مطابق با حداکثر سرعت ۳۵ درصد حداقل سرعت محاسبه شد که مطابق با شدت متوسط است. جلسات تمرینی پنج روز در هفته برای دو هفته متوالی انجام شد. در اولین روز تمرینی مدت زمان تمرین ۵ دقیقه بود و در روزهای بعدی مدت تمرین به میزان ۱ دقیقه در روز اضافه شد و در نهایت ۶ دقیقه رسید. از روز پنجم حیوانات برای یک ساعت در روز تمرین کردند. هر دو هفته یککبار دوباره آزمون حداکثر سرعت به همان روش قبل انجام شد.

روش مصرف اتانول: در این پژوهش از الکل (اتانول) ۲۰ درصد با دوز چهار گرم بر کیلوگرم وزن بدن به‌صورت روتوش‌های استفاده شد. برای خوراک دیاغ، اتانول به موش‌ها از گژنگی اضافه شد. برای سازگاری موش‌ها با اتانول از دوز ۱/۰ گرم شروع شد و هر روز ۱/۰ گرم به مقدار قبل اضافه شد. روز هشتم به دوز مذکور یعنی چهار گرم رسید. بعد از روزنده به دوز چهار گرم بر کیلوگرم با فاصله دو روز به‌صورت روزانه دوباره روزنده می‌شود. هر دو هفته یکبار حیوانات به نسبت قبلی آزمون حداقل سرعت به همان روش قبل انجام شد.

ملاحظات اخلاقی
پژوهش حاضر با توجه به اصول راهنمای آموزشی برای پژوهش در حیوانات آزمایشگاهی (IACUC) حاضر شد. تمام حیوانات به ترتیب کمیته اختلالات انگشتان (کد اختلال رؤوبه) رسید. یک هکتنی خاص حیوانات برای آزمایش مناسب با رؤوبه انتخاب شد. از حیوانات مورد نظر برای صحیح حیات و به‌طور صحیح استفاده شد. با حیوانات از جمله اجناس با چکش فشار، استرس، رنج و داردشده به آنها به‌صورت شایسته و به‌طور صحیح فشار شد. تداری و داروهاز لازم به‌منظور ایجادشدن عفونت با عوارض جانبی پس از تمرین و مصرف اتانول حیوانات دریافت گرفته شد. قربانی خود حیوانات طبق اصول اختلالی با کمترین دهد و آزار حیوانات انجام شد. شرایط زیستی، نگهداری و دفع لاش حیوانات به‌طور صحیح و با رعایت اصول اختلالی صورت پذیرفت.

استخراج بافت
تمام گروه‌ها ۴۸ ساعت پس از مصرف اتانول و آخرين جلسه تمریني در شرایط کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه ناشناختین شبانه با تزریق درون سفیدی به‌طور کاملاً مشابه

1. Institutional Animal Care and Use Committee
2. Ketamine
3. Xylazine
استخراج RNA

برای استخراج RNA، استفاده شد.

استخراج طبق دستورالعمل کیت شرکت سازنده انجام شد. به میکروتیوب‌های RNase & DNase Free میلی‌گرم نمونه هم‌زمان اضافه شد و به آن بی‌فیلتر نیاز داشت. به مقدار 75 میکروالتر افزوده شد. سپس نمونه‌ها به مدت 15 دقیقه انکوباسیون شدند. 150 میکروالتر کلروفم به مخلوط حاضر اضافه شد و بین 15 تا 15 دقیقه مخلوط حاضر به حالت یکنواخت شد. سپس RNase و DNase اضافه شدند.

استخراج RNA، سنتز cDNA و بیان آن

برای استخراج RNA توتال از بافت قلب موش صحرایی از کیت پارس طوس 1 (ایران) استفاده شد.

میکروتیوب کالکتور به سیلیکا و اضافه شده بود. دوباره به مدت 15 دقیقه در محیط نگهداری شد. سپس با ترکیب DEPC و RNase-free (سیناکلون، ایران) برای سنتز cDNA استفاده شد. برای سنتز cDNA از کیت سنتز cDNA شرکت یکتاهیچپاس آماده شد. با دن منظور، cDNA برای استخراج از طبق دستورالعمل شرکت سازنده با استفاده از 1 میکروگرم RNA در بافت بیشتر بود. سپس با استفاده از آغازگر T و RNase-free (سیناکلون، ایران) برای سنتز cDNA استفاده شد.

برای تکثیر اختصاصی ژن GAPDH 5 از آغازگرهای اختصاصی پایه این بافت انتخاب شدند. استخراج RNA و سنتز cDNA، سپس با استفاده از RNase-free روش DNA، از cDNA پریمیر و UV استخراج شده با روش لیزر فوتوروز روز آگاز و استخراج RNA با استفاده از RNase-free روش DNA استخراج ژن GAPDH

1. Pars Tous
2. Diethyl Pyrocarbonate
3. Yektatajiz Azma
4. Glyceraldehyde 3-Phosphate Dehydrogenase
5. Primer Premier
6. National Center for Biotechnology Information
فرج نمای‌ای اثر هدفه هوازی توأم با مصرف اتانول بر

گزارش شده در مطالعه لیانگ و همکاران (2020) استفاده شد. سپس آغازگرها توسط شرکت ماکرون؟ کرده جنوبی سنتر شد. مشخصات آغازگرها استفاده شده در این پژوهش در جدول شماره یک نشان داده شده است.

Real Time PCR

جدول ۱: مشخصات آغازگرها استفاده شده در فرایند

<table>
<thead>
<tr>
<th>جن</th>
<th>توالی آغازگر</th>
<th>طول محصول</th>
<th>Accession number</th>
<th>Product length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nrf2</td>
<td>F 5'- GCTGCCATTAGTCAGTCGCTCTC-3'</td>
<td>NM_031789.2</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R 5'- ACCGTGCCTTCAGTGTGCTTC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>F 5'- GGCAAGTTCAACGGCACAG-3'</td>
<td>NM_017008.4</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R 5'- GACGCCAGTAGACTCCACGAC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بعد از انجام دادن واکنش‌های مربوط به PCR معمولی و به‌دست‌آوردن شرایط و دمای اتصال مطلوب برای زن‌ها، PCR در زمان واقعی به روش Syber Green برای زن‌ها با استفاده از دستگاه Rotor gene Corbett در حجم نهایی ۲۰ میکروولیتر و هر واکنش به‌صورت duplicate صورت گرفت. مخلوط واکنش شامل سه میکروولیتر cDNA (۵۰ نانوگرم در میکروولیتر) و هشت میکروولیتر RealQ Plus 2x Master Mix Green (Ampliqon, Denmark) و ۲/۸ میکروولیتر آب عاری از ریبونوکلئاز بود. هریک از آغازگرها رفت و برگشت (۱۰ پیکومول) و ۸۲ میکروولیتر آب از ریبونوکلئاز بود. برنامه دمایی که کاربردی در ۱۳ ۰ دقیقه، ۱۰ میکروولیتر دماگزایی (۹۵ درجه سانتی‌گراد به مدت ۲۰ ثانیه)، ۶۰ درجه ۹۵ درجه سانتی‌گراد برای تغییر و سپس بهمراه ۴۰ درجه ۲۰ ثانیه، ۶۰ درجه ۹۵ درجه سانتی‌گراد برای تغییر و سپس بهمراه ۳۰ ثانیه) بود. نمودار ذوب برای بررسی سانتی‌گراد بین آغازگرها GAPDH سانتی‌گراد برای اتصال آغازگرها Zn و Nrf2 با ۵۸ و ۵۶ درجه سانتی‌گراد برای اتصال Zn در ۲۰ ثانیه و ۲۲ درجه سانتی‌گراد برای اتصال Zn در ۳۰ ثانیه) بود. نمودار ذوب برای بررسی درستی داده‌ها رسم شد. میزان بیان Zn-های مدور تری با روش ΔΔCT در جدول یک نشان داده شد.

1. Liange
2. Macrogen Inc. Seoul, Korea
سنجش طرفیت تام آنتی-اکسیدانی و مالون‌دی‌آلدنید

طرفیت تام آنتی-اکسیدانی بالا بسته به استفاده از روش FRAP (Ferric Reducing-Antioxidant Power) که بنیزی و استراین (21) ارائه کرد. این روش توانایی احیای آنتی-اکسیدانی را می‌آورد. در حضور Fe(II) به کمک FeIII-TPTZ ارائه‌گیری می‌شود. در pH اسیدی، زمانی که کمپلکس FeIII-TPTZ شود، رنگ آبی تولید می‌شود که در طول موج 593 نانومتر دارای بیشترین جذب است. در جنبش غیراختصاصی است و هر نیمه‌گامشی که در این شرایط، توانایی احیای کمتری از نیمه‌گامش FeIII-TPTZ داشته باشد، بعنوان احیای FeIII-FeII-TPTZ مورد نظر قرار گرفت.

مالون‌دی‌آلدنید (MDA) با استفاده از روش تیوباربیتوریک اسید (22) اندازه‌گیری شد. در این روش ابتدا 200 میکرویاترای لیتر پلاسما بافت هموژن شده با ۵/۰ میلی‌لیتر تری‌کلرواستیک اسید درصدی و یک میلی‌لیتر تیوباربیتوریک اسید درصدی مخلوط شد. بعد از گرم‌شدن در دمای 100 درجه سانتی‌گراد به مدت 10 دقیقه با دمای 30 درجه سانتی‌گراد به مدت 10 دقیقه شد. سپس جذب آنها در طول موج 545 نانومتر با دستگاه اسپکتروفتوسکوپ شانه، ضریب نسبی مقاله 156 میلی‌مترهای نمودار شد.

نتایج‌آماری داده‌ها

در بخش آمار توصیفی از شاخص‌های پراکندگی انحراف معیار، میانگین انحراف معیار، میانگین و نمودار استفاده شد. در بخش آمار استنباطی برای تی ام‌تی‌وی که درصدی و به مدت 60 دقیقه در دمای 100 درجه سانتی‌گراد به مدت 10 دقیقه با دمای 30 درجه سانتی‌گراد به مدت 10 دقیقه، سپس حاصل نتایج‌آماری داده‌ها از آزمون کلموگروف-اسمیرنوف (6) استفاده شد. همچنین هم‌سانی بودن واریانس‌ها با آزمون لون‌سنجی‌های برای بررسی تغییرات گروهی از آزمون تحلیل واریانس دوویجی و آزمون تیکی به‌منظور بررسی تغییرات بین گروهی استفاده شد. برای تجزیه و تحلیل داده‌ها از نرم‌افزار گرافیک پرسنل ۶.۰۷ نسخه استفاده شد.

نتایج

GAPDH و Nrf2 روی زل آگارز یک درصد نشان داد که هنگام Real Time PCR ثبت نشده‌اند. نتایج محصولات حاصل از Real Time PCR روی روند ترکیب پلاسما با استحکام تکثیف شده است. مشاهده تکثیب در محدوده ۱۰۴ و ۱۴۳ جفت.
باز بهترین برای ژن‌های GAPDH و Nrf2 در بافت قلب در هم‌نمونه‌ها، بیانگر صحت انجام آزمایش و تکثیر قطعه مذکر بود (شکل شماره یک).

شکل 1- الکتروفورز محصول PCR با استفاده از آغازگر‌های اختصاصی ژن‌های GAPDH و Nrf2 روی ZL آگارز یک درصد

نتایج تحلیل آزمون تحلیل واریانس دوسویه بیان زن Nrf2 در عضله قلب موش صحرایی نشان داد که تمرین هوایی اثر معنی‌دار بر بیان زن دارنده داشته است ($P = 0.0068$). همچنین نتایج پژوهش تأثیر معنی‌داری مصرف اتانول (0.312) و اثر تعاملی بین تمرین هوایی و مصرف اتانول را بر بیان زن Nrf2 نشان داد. نتایج آزمون تی‌ویکی نشان داد که هشته تمرین هوایی بیان زن Nrf2 را در بافت قلب به‌طور معنی‌داری در گروه‌های تمرین و تمرین به‌همراه مصرف اتانول در مقایسه با گروه کنترل افزایش داد ($P \leq 0.05$) و مصرف اتانول در این مدت نیز تأثیر معدناداری بر بیان زن Nrf2 در گروه اتانول در مقایسه با گروه کنترل نداشت.
در این پژوهش ظرفیت آنتی اکسیدانی تأم به عنوان برآورده از ترکیب پتانسیل آنتی اکسیدان‌‌های مختلف در بدن اندازه‌گیری شد که مقادیری در گروه‌های مطالعه‌شده در شکل شماره سه نشان داده شده است. نتایج آزمون تحلیل واریانس دووسویه نشان داد که اثر تمرین (P = 0.013) و اثر تعاملی بین تمرین و مصرف اتانول (P = 0.024) بر میزان ظرفیت آنتی اکسیدانی تأم معنادار بود. نتایج آزمون تعیین توکی نشان داد که مصرف اتانول سبب کاهش معناداری در میزان ظرفیت آنتی اکسیدانی تأم در گروه اتانول (P = 0.009) نتایجی بر میلی گرم پروتئین) کاهش معناداری را در مقایسه با گروه کنترل نشان می‌دهد.

شکل ۲- تغییرات چندبرابری زن Nrf2 در گروه‌های تمرین، اتانول و تمرین + اتانول در مقایسه با گروه کنترل

Figure 2- Fold change of Nrf2 gene in exercise, ethanol and exercise + ethanol groups compared to control group

* : تفاوت معنا دار بین گروه تمرین و تمرین + اتانول در مقایسه با گروه کنترل (P ≤ 0.05)

* : Significant difference between exercise group and exercise + ethanol compared to control group (P ≤ 0.05)
در این پژوهش مالون دی آلدهید به عنوان شاخصی برای پراکسیداسیون لیپیدی انتخاب شد. نتایج آزمون تحلیل واریانس دوویه درباره متغیر ذکرشده نشان داد که اثر تمرین (P = 0.0001) و اثر ترکیبی بین تمرین و مصرف اتانول (P = 0.0001) تا حدی مشابه مصرف اتانول تحت شرایط تمرین بود. در مقایسه با گروه کنترل، میزان سطح مالون دی آلدهید در گروه اتانول (P = 0.0001) و گروه اتانول تحت شرایط تمرین (P = 0.0001) نیز باعث افزایش گردید. نتایج آزمون تحلیل واریانس دوویه درباره متغیر ذکرشده نشان داد که اثر تمرین (P = 0.0001) و اثر ترکیبی بین تمرین و مصرف اتانول (P = 0.0001) تا حدی مشابه مصرف اتانول تحت شرایط تمرین بود. در مقایسه با گروه کنترل، میزان سطح مالون دی آلدهید در گروه اتانول (P = 0.0001) و گروه اتانول تحت شرایط تمرین (P = 0.0001) نیز باعث افزایش گردید.
پلاسمای مثبت متناسی. نتایج آزمون تبعیض توزیع داد که مصرف اتانول سبب افزایش میزان MDA در گروه اتانول در مقایسه با گروه کنترل (*** P ≤ 0.0001)، میزان MDA در گروه تمرين (### P ≤ 0.0001) نسبت به گروه اتانول کاهش یافت. همچنین میزان MDA در گروه اتانول + تمرين ($$$$ P ≤ 0.0001) نسبت به گروه اتانول کاهش یافت.

شکل 4- میزان سطوح MDA در گروه‌های مطالعه‌شده

Figure 4- Plasma levels of MDA in the studied groups

MDA level in ethanol group compared to control group (**** P ≤ 0.0001), MDA level in ethanol group compared to exercise group (### P 0.0001), MDA level in exercise group compared to control group (* P ≤ 0.05), MDA in exercise + ethanol group compared to ethanol group ($$$$ P ≤ 0.0001)
بحث و نتایج گیری

یافته‌های پژوهش حاضر نشان داد که مصرف انثال ترغیب سبب کاهش و افزایش سطح پلیسامی می‌شود که یک‌تودن می‌تواند به‌دست آورد. سپس‌های و پراکسیداسیون لیپید باشد. از طرفی نتایج نشان داد که انجام دادن تمرینات وزشی منظم تأمیم با مصرف انثال تولید سطح سپس‌های اکسیداتیوی ناشی از انثال را بهبود دهد. این یافته با یافته‌های چیکو و همکاران (22) همسوست. آن‌ها تأثیر تأمین تمرینات بدین و مصرف مزمن انثال را بررسی کردند و نشان دادند که مصرف الكل به افزایش مالوندی آلدئید قلبی و کاهش پتنسیل آنتی اکسیدان می‌کند. منجر می‌شود و کاهش میزان آلدئید کربن دهند. اکسیداتیو و میزان میزان آلدئید در بافت کبد و بیشتر شود. علاوه بر این، تولید گلوتاتیون برای اکسید، سوپر اکسید دیسموتاز و کاتالاز و افزایش میزان میزان آلدئید ذیل در بافت کبد و بیشتر شود. علاوه بر این، کاهش تولید دفاع آنتی اکسیدانی (آنژیمی و غیرآنژیمی) و اکسیداتیو در بافت‌های مختلف کبد و قلب منجر شود. تجزیه انثال در کبد علاوه بر تولید ROS موجب تشکیل مولکول‌هایی می‌شود که به تولید پیشتر آن‌ها یافته‌های آنتی اکسیدانی تأثیر دارد. آنتی اکسیدان‌هایی که به تولید ROS هایی به نام سنتروم P450 (27) را تجزیه می‌کنند و تولید ROS را تقویت کند (28). همچنین نشان داده شده است که انجام‌های تمرینات ورزشی حاد میزان اکسیدان و استرس اکسیداتیو را در افراد تمرین‌کننده افزایش می‌دهد. اما ورزش متوسط و طولانی مدت سبب افزایش فعالیت آنتی اکسیدان و کاهش تولید اکسیدان به دلیل بهبود و استقرار استرس اکسیداتیو، پراکسیداسیون لیپیدی و پیگمات سیستم دفاعی آنتی اکسیدان روز می‌کند (14). شین و همکاران (22) گزارش کرده‌اند که فعالیت آنتی اکسیدانی آنتی اکسیدانی به‌دنبال انجام‌دادن تمرینات ورزشی بلندمدت

1. Chicco
2. Cytochrome P450 2E1 (CYP2E1)
3. Shin
و منظم افزایش می‌یابد. در مطالعه دیگری نشان داده شد که میزان گلوتاتیون پراکسیداز بلافاصله پس از تمرینات کوتاه و شدید کاهش می‌یابد (28). در حالی که به 12 هفته تمرين مقاومتي منظم و مستمر میزان مالوندی آلدید کاهش می‌یابد (29). با توجه به تفاوت‌هاي موجود در پروتکل تمرین، نوع بافت بررسی شده و تفاوت در برخی فاکتورهای ارزیابی شده نمی‌توان به نتیجه‌گیری قاطعی درباره نحوه تأثیر پرکسیداسیون لیپیدی و دفاع آنتی اکسیدانی در اثر فعاليت ورزشي دست یافته. بهطورکلی می‌توان اظهار کرده که انجام‌دادن تمرینات بدنی حاد و شدید موجب افزایش پراکسیداسیون لیپیدی و اختلال در دفاع آنتی اکسیدانی می‌شود. در حالی که با 12 هفته تمرین مقاومتی منظم و مستمر میزان مالوندی آلدید کاهش می‌یابد (29).

با توجه به تفاوت‌هاي موجود در پروتکل تمرین، نوع بافت بررسی شده و تفاوت در برخی فاکتورهای ارزیابی شده نمی‌توان به نتیجه‌گیری قاطعی درباره نحوه تأثیر پرکسیداسیون لیپیدی و دفاع آنتی اکسیدانی در اثر فعاليت ورزشي دست یافته. بهطورکلی می‌توان اظهار کرده که انجام‌دادن تمرینات بدنی حاد و شدید موجب افزایش پراکسیداسیون لیپیدی و اختلال در دفاع آنتی اکسیدانی می‌شود. در حالی که با 12 هفته تمرین مقاومتی منظم و مستمر میزان مالوندی آلدید کاهش می‌یابد (29).

همانطور که در پژوهش حاضر مشاهده شد، سطوح پلاسمای آنتی اکسیدانی نام و پراکسیداسیون لیپید در گروهی که ضمن دریافت اتانول تمرين نيز داشتند، در مقايسه با گروه اتانول بهبود درخور ملاحظه داشته است. در همين راستا داده‌هاي آنلي اانتي اکسيدان (30) توليد مولکول هاي آنتي اکسیداني در خانه بافتی و انتقال آنها از طريق پلاسمانما محل وقوع آسیب اکسیداتیو و کاهش پراکسیداسیون می‌شود. اين بهبود وضعیت می‌تواند از طریق تنظیم نسبت تریپل (30)؛ جابجایی ویتامین‌های آنتی اکسیدانی داخلی (31)، تولید مولکول‌های آنتی اکسیدانی در سطح بیان ژن‌های کنترل‌نشین سیستم‌های دفاع آنتی اکسیدانی به وجود می‌آید، سبب بهبود آسیب‌های ناشی از استرس اکسیداتیو و کاهش پراکسیداسیون لیپیدی می‌شود.

به این ترتیب نشان داده شده است که می‌توان نتیجه گرفت تمرینات بدنی موجب افزایش بیان Nrf2 می‌شود که به نظر می‌رسد کاندید اصلی برای بازیابی و بهبود آسیب‌های ناشی از استرس اکسیداتیو و کاهش پراکسیداسیون لیپیدی می‌شود. همچنین نتایج پژوهش نشان داد علاوه بر گروه تمرين، اتانول، بیان فاکتور نسخه‌بنداري در Nrf2 موجب افزایش نشته می‌شود. در همين راستا داده‌هاي آنتي اکسيدان (30) همچنین نتایج گرفت تمرینات بدنی منظم از طریق پلاسما به محل وقوع آسیب اکسیداتیو انجام شود (30) که به نظر می‌رسد کاندید اصلی برای بيشكاره نابودی و شناسنوردی Nrf2 است.

همچنین نتایج پژوهش نشان داد علاوه بر گروه تمرين، اتانول، بیان فاکتور نسخه‌بنداري در Nrf2 موجب افزایش نشته می‌شود. در همين راستا داده‌هاي آنتي اکسيدان (30) همچنین نتایج گرفت تمرینات بدنی منظم از طریق پلاسما به محل وقوع آسیب اکسیداتیو انجام شود (30) که به نظر می‌رسد کاندید اصلی برای بيشكاره نابودی و شناسنوردی Nrf2 است.

همچنین نتایج پژوهش نشان داد علاوه بر گروه تمرين، اتانول، بیان فاکتور نسخه‌بنداري در Nrf2 موجب افزایش نشته می‌شود. در همين راستا داده‌هاي آنتي اکسيدان (30) همچنین نتایج گرفت تمرینات بدنی منظم از طریق پلاسما به محل وقوع آسیب اکسیداتیو انجام شود (30) که به نظر می‌رسد کاندید اصلی برای بيشكاره نابودی و شناسنوردی Nrf2 است.

1. Narasimhan & Rajasekaran
2. Done
3. Majerczak
تمرین استقامتی با شدت متوسط موجب بهبود دفاع انتی‌کسیدانی در مردان جوان می‌شود. راداک\(^1\) و همکاران\(^2\) نشان دادند تمرین استقامتی اثری محافظت برابر اسبیکسیداتی حفظ ندارد از سن دارد. همکاران\(^3\) نشان دادند تمرینات هوازی حاد انجمدیده توسط دو روش تدریجی و با دو روش تدریจ

1. Radak
2. Antioxidant Response Element
3. Kelch-Like ECH-Associated Protein 1
4. Superoxide Dismutase
5. Powers
پیام مقاله

نتایج این مطالعه نشان داد که هشت هفته تمرین استقامتی منظم از طریق تعیین در بیان فاکتور روتوسی هسته Nrf2 و افزایش سطوح TAC و کاهش سطوح MDA ممکن است سبب بهبود آسیب‌های اکسیداتیو عضله قلب ناشی از مصرف اتانول شود. اگر اثرات مثبت پژوهش‌های حاضر در آزمودنی‌های انسانی نیز تکرار شود، تمرین هوریا منظم ممکن است پتانسیل درمانی برای مقابله با اثرات آسیب‌رسان ناشی از مصرف مزمن کلی داشته باشد.

منابع

استناد به مقاله

فرج‌تبار زهرا، فتحی رزیتا، نصیری خدیجه، احمدی فرهاد. اثر هشت هفته تمرین هوایی و مصرف اتانول بر Nrf2 در عضله قلب و برخی از شاخص‌های آنتی‌اکسیدانی موش صحرا. فیزیولوژی ورزشی. بهار 1400؛ 13 (49): 88-65

شناسه دیجیتال: 10.22089/spj.2019.7664.1940