تعداد نشریات | 8 |
تعداد شمارهها | 308 |
تعداد مقالات | 3,860 |
تعداد مشاهده مقاله | 7,506,459 |
تعداد دریافت فایل اصل مقاله | 2,730,212 |
تأثیر یک دوره تمرینات هوازی بر سطوح سرمی اسپکسین و شاخصهای تریگلیسیرید-گلوکز، McAuley، محصول تجمع لیپیدی و چربی احشایی در دختران چاق/دارای اضافهوزن نابالغ | ||
فیزیولوژی ورزشی | ||
مقاله 5، دوره 12، شماره 46، تیر 1399، صفحه 95-116 اصل مقاله (554.66 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22089/spj.2019.6787.1849 | ||
نویسندگان | ||
معصومه باقرسلیمی1؛ رزیتا فتحی* 2؛ سهراب کاظمی3 | ||
1دانشجوی دکتری بیوشیمی و متابولیسم ورزشی، دانشگاه مازندران | ||
2دانشیار فیزیولوژی ورزشی، دانشگاه مازندران | ||
3استادیار مرکز تحقیقات بیولوژی سلولی و مولکولی، پژوهشکدة سلامت، دانشگاه علوم پزشکی بابل | ||
چکیده | ||
چاقی و اختلالات متابولیک ناشی از آن بهویژه مقاومت به انسولین (IR) در کودکان روند روبهرشدی دارد؛ بنابراین، این پژوهش با هدف بررسی تأثیر تمرینات هوازی بر سطوح اسپکسین و شاخصهای محصول تجمع لیپیدی (LAP)، چربی احشایی (VAI)، تریگلیسیرید-گلوکز (TyG) و McAuley در دختران چاق/دارای اضافهوزن نابالغ انجام شد. 32 دختر چاق/دارای اضافهوزن (میانگین سنی 75/0 ± 62/9 سال، وزن 26/9 ± 71/49 کیلوگرم، شاخص تودة بدنی 92/2 ± 40/25 کیلوگرم بر مترمربع، مرحلة تانر 3-2) داوطلبانه در پژوهش حاضر شرکت کردند و در گروههای پیادهروی تناوبی (12 نفر)، پیادهروی تداومی (11 نفر) و کنترل (نُه نفر) قرار گرفتند. تمرینات بهمدت هشت هفته و سه جلسه در هفته (30 دقیقه پیادهروی با شدت 75-60 و 85-70 درصد ضربان قلب بیشینه بهترتیب در گروه تداومی و تناوبی) انجام شد. غلظت اسپکسین به روش الایزا اندازهگیری شد و شاخصهای چاقی احشایی و IR طبق معادلههای مرتبط محاسبه شدند. برای تجزیه-وتحلیل دادهها از تحلیل واریانس عاملی با اندازهگیری مکرر استفاده شد. نتایج نشان داد که اثر تعاملی زمان × گروه برای متغیر اسپکسین معنادار نبود (P = 0.836). اثر تعاملی زمان × گروه برای مـتغیرهای LAP (P = 0.007)، VAI (P = 0.045)، McAuley (= 0.026 P) و TyG (0.001 = P) معنادار بود. در گروه کنترل، LAP، VAI و TyG افزایش معنادار (بهترتیب 0.037 = P، 0.046 = P و 0.005 = P) و McAuley کاهش معنادار (0.030 P =) داشتند. در گروه پیادهروی تداومی، LAP کاهش معنادار (0.002 = P)، VAI تمایل به کاهش (0.057 P =)، TyG کاهش معنادار (0.002 = P) و McAuley تمایل به افزایش (= 0.071 P) مشاهده شد. در گروه پیادهروی تناوبی، LAP، VAI، TyG و McAuley تغییر معناداری نیافتند (بهترتیب P = 0.129 ، = 0.660 P، = 0.390 P، 0.357 = P). یافتههای پژوهش حاضر نشان داد که هشت هفته پیادهروی تداومی مستقل از تغییرات سطوح سرمی اسپکسین توانست روند افزایش شاخصهای چاقی احشایی و IR مشاهدهشده در گروه کنترل را معکوس کند و موجب بهبودی این شاخصها شود. | ||
کلیدواژهها | ||
اسپکسین؛ پیادهروی؛ چاقی؛ کودکان؛ مقاومت به انسولین | ||
مراجع | ||
alikcioglu PG, Newgard CB. Metabolomic signatures and metabolic complications in childhood obesity. In: Freemark MS, editors. Pediatric Obesity. Switzerland: Springer; 2018. p. 343-61. 2. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376(15):1419-29. 3. Kelly LA, Lane CJ, Weigensberg MJ, Toledo-Corral CM, Goran MI. Pubertal changes of insulin sensitivity, acute insulin response, and β-cell function in overweight Latino youth. J Pediatr. 2011;158(3):442-6. 4. Pinhas‐Hamiel O, Lerner‐Geva L, Copperman NM, Jacobson MS. Lipid and insulin levels in obese children: changes with age and puberty. Obesity. 2007;15(11): 2825-31. 5. Pacini G. The hyperbolic equilibrium between insulin sensitivity and secretion. Nutr Metab Cardiovasc Dis. 2006;16(1):22-7. 6. Wan B, Wang X-R, Zhou Y-B, Zhang X, Huo K, Han Z-G. C12ORF39, a novel secreted protein with a typical amidation processing signal. Biosci Rep. 2010;30(1):1-10. 7. Walewski JL, Ge F, Gagner M, Inabnet WB, Pomp A, Branch AD, et al. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg. 2010;20(1):93-107. 8. Walewski JL, Ge F, Lobdell Ht, Levin N, Schwartz GJ, Vasselli JR, et al. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity (Silver Spring). 2014;22(7):1643-52. 9. Kumar S, Hossain J, Nader N, Aguirre R, Sriram S, Balagopal PB. Decreased circulating levels of spexin in obese children. J Clin Endocrinol Metab. 2016;101(7):2931-6. 10. Kolodziejskii PA, Pruszynska-Oszmalek E, Korek E, Sassek M, Szczepankiewicz D, Kaczmarek P, et al. Serum levels of spexin and kisspeptin negatively correlate with obesity and insulin resistance in women. Physiol Res. 2018;67(1):45-56. 11. Venner AA, Lyon ME, Doyle-Baker PK. Leptin: A potential biomarker for childhood obesity? Clin Biochem. 2006;39(11):1047-56. 12. Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF. Leptin resistance in obesity: An epigenetic landscape. Life Sci. 2015;140:57-63. 13. Ge JF, Walewski JL, Anglade D, Berk PD. Regulation of hepatocellular fatty acid uptake in mouse models of fatty liver disease with and without functional leptin signaling: Roles of NfKB and SREBP-1C and the effects of spexin. Semin Liver Dis. 2016;36(4):360-72. 14. Agha M, Agha R. The rising prevalence of obesity: part A: impact on public health. Int J Surg Oncol. 2017;2(7):17. 15. Gu L, Ma Y, Gu M, Zhang Y, Yan S, Li N, et al. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes. Peptides. 2015;71:232-9. 16. Ma A, Bai J, He M, Wong AO. Spexin as a Neuroendocrine Signal with Emerging Functions. Gen Comp Endocrinol. 2018;265:90-6. 17. Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, et al. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007;17(3):320-7. 18. Sassek M, Kolodziejski PA, Szczepankiewicz D, Pruszynska-Oszmalek E. Spexin in the physiology of pancreatic islets: Mutual interactions with insulin. Endocrine. 2018;63(3):1-7. 19. Sassek M, Kolodziejski PA, Strowski MZ, Nogowski L, Nowak KW, Mackowiak P. Spexin modulates functions of rat endocrine pancreatic cells. Pancreas. 2018;47(7):904-9. 20. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129-39. 21. Sandeep S, Gokulakrishnan K, Velmurugan K, Deepa M, Mohan V. Visceral & subcutaneous abdominal fat in relation to insulin resistance & metabolic syndrome in non-diabetic south Indians. Indian J Med Res. 2010;131:629-35. 22. Després J-P, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28(6):1039-49. 23. Kahn HS. The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc Disord. 2005;5(1):26-36. 24. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral adiposity index (VAI): a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920-2. 25. Mirmiran P, Bahadoran Z, Azizi F. Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients. Endocrinol Metab. 2014;29(4):443-9. 26. Lewanczuk RZ, Paty BW, Toth EL. Comparison of the [13C] glucose breath test to the hyperinsulinemic-euglycemic clamp when determining insulin resistance. Diabetes Care. 2004;27(2):441-7. 27. Huang TT-K, Johnson MS, Goran MI. Development of a prediction equation for insulin sensitivity from anthropometry and fasting insulin in prepubertal and early pubertal children. Diabetes Care. 2002;25(7):1203-10. 28. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24(3):460-4. 29. Moon S, Park JH, Jang E-J, Park Y-K, Yu JM, Park J-S, et al. The Cut-off Values of Surrogate Measures for Insulin Sensitivity in a Healthy Population in Korea according to the Korean National Health and Nutrition Examination Survey (KNHANES) 2007–2010. J Korean Med Sci. 2018;33(29):197-207. 30. Unger G, Benozzi SF, Perruzza F, Pennacchiotti GL. Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinol Nutr. 2014;61(10):533-40. 31. Nor NSM, Lee S, Bacha F, Tfayli H, Arslanian S. Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: comparison with the hyperinsulinemic–euglycemic clamp. Pediatr Diabetes. 2016;17(6):458-65. 32. Vieira-Ribeiro SA, Fonseca PC, Andreoli CS, Ribeiro AQ, Hermsdorff HH, Pereira PF, et al. The TyG index cutoff point and its association with body adiposity and lifestyle in children. J Pediatr (Rio J). 2018;95(2):217-23. 33. Lee S-H, Yang HK, Ha H-S, Lee J-H, Kwon H-S, Park Y-M, et al. Changes in metabolic health status over time and risk of developing type 2 diabetes: A prospective cohort study. Medicine. 2015;94(40):1705-12. 34. Navarro-González D, Sánchez-Íñigo L, Fernández-Montero A, Pastrana-Delgado J, Martinez JA. TyG index change is more determinant for forecasting type 2 diabetes onset than weight gain. Medicine. 2016;95(19):3646. 35. Marson EC, Delevatti RS, Prado AK, Netto N, Kruel LF. Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: A systematic review and meta-analysis. Prev Med. 2016;93:211-8. 36. Hong H-R, Jeong J-O, Kong J-Y, Lee S-H, Yang S-H, Ha C-D, et al. Effect of walking exercise on abdominal fat, insulin resistance and serum cytokines in obese women. J Exerc Nutrition Biochem. 2014;18(3):277. 37. Baghersalimi M, Fathi R, Khosravi A, Bahreini A, Shirazi A. The effect of single session of aerobic interval exercise on serum spexin levels in active young men. Physiology of Exercise and Physical Activity. 2017;10(2):37-46. (In Persian) 38. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ. 2000;320(7244):1240. 39. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153-6. 40. Kahn HS. The lipid accumulation product is better than BMI for identifying diabetes: a population-based comparison. Diabetes Care. 2006;29(1):151-3. 41. Garcés MJ, Hernández J, Queipo G, Klünder-Klünder M, Bustos M, Herrera A, et al. Novel gender-specific visceral adiposity index for Mexican pediatric population. Rev Med Hosp Gen (Mex). 2014;77(4):153-9. 42. Guerrero-Romero F, Simental-Mendía LE, Gonzalez-Ortiz M, Martínez-Abundis E, Ramos-Zavala MaG, Hernandez-Gonzalez SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347-51. 43. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863-75. 44. Lin C-y, Huang T, Zhao L, Zhong LL, Lam WC, Fan B-m, et al. Circulating spexin levels negatively correlate with age, BMI, fasting glucose, and triglycerides in healthy adult women. J Endocr Soc. 2018;2(5):409-19. 45. Hodges SK, Teague AM, Dasari PS, Short KR. Effect of obesity and type 2 diabetes, and glucose ingestion on circulating spexin concentration in adolescents. Pediatr Diabetes. 2018;19(2):212-6. 46. Kumar S, Hossain MJ, Javed A, Kullo IJ, Balagopal PB. Relationship of circulating spexin with markers of cardiovascular disease: A pilot study in adolescents with obesity. Pediatr Obes. 2018;13(6):374-80. 47. Sanchez-Garrido MA, Tena-Sempere M. Metabolic control of puberty: Roles of leptin and kisspeptins. Horm Behav. 2013;64(2):187-94. 48. Liu Y, Li S, Qi X, Zhou W, Liu X, Lin H, et al. A novel neuropeptide in suppressing luteinizing hormone release in goldfish, Carassius auratus. Mol Cell Endocrinol. 2013;374(1-2):65-72. 49. Caumo A, Perseghin G, Brunani A, Luzi L. New insights on the simultaneous assessment of insulin sensitivity and β-cell function with the HOMA2 method. Diabetes Care. 2006;29(12):2733-4. 50. Balducci S, Cardelli P, Pugliese L, D’Errico V, Haxhi J, Alessi E, et al. Volume-dependent effect of supervised exercise training on fatty liver and visceral adiposity index in subjects with type 2 diabetes: The Italian diabetes exercise study (IDES). Diabetes Res Clin Pract. 2015;109(2):355-63. 51. Vissers D, Hens W, Hansen D, Taeymans J. The effect of diet or exercise on visceral adipose tissue in overweight youth. Med Sci Sports Exerc. 2016;48(7):1415-24. 52. Barbeau P, Johnson MH, Howe CA, Allison J, Davis CL, Gutin B, et al. Ten months of exercise improves general and visceral adiposity, bone, and fitness in black girls. Obesity. 2007;15(8):2077-85. 53. Owens S, Gutin B, Allison J, Riggs S, Ferguson M, Litaker M, et al. Effect of physical training on total and visceral fat in obese children. Med Sci Sports Exerc. 1999;31(1):143-8. 54. Davis CL, Pollock NK, Waller JL, Allison JD, Dennis BA, Bassali R, et al. Exercise dose and diabetes risk in overweight and obese children: a randomized controlled trial. Jama. 2012;308(11):1103-12. 55. Lee S-H, Kwon H-S, Park Y-M, Ha H-S, Jeong SH, Yang HK, et al. Predicting the development of diabetes using the product of triglycerides and glucose: The Chungju Metabolic Disease Cohort (CMC) study. PLoS One. 2014;9(2):90430. 56. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Clinical Diabetology. 2001;2(4):255-66. 57. Vangipurapu J, Stančáková A, Pihlajamäki J, Kuulasmaa T, Kuulasmaa T, Paananen J, et al. Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men. Diabetologia. 2011;54(3):563-71. 58. Isokuortti E, Zhou Y, Peltonen M, Bugianesi E, Clement K, Bonnefont-Rousselot D, et al. Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: A population-based and inter-laboratory study. Diabetologia. 2017;60(10):1873-82. 59. Albrechtsen NJW, Færch K, Jensen TM, Witte DR, Pedersen J, Mahendran Y, et al. Evidence of a liver–alpha cell axis in humans: Hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia. 2018;61(3):671-80. 60. Turcotte LP, Fisher JS. Skeletal muscle insulin resistance: roles of fatty acid metabolism and exercise. Phys Ther. 2008;88(11):1279-96. 61. Lee S, Guerra N, Arslanian S. Skeletal muscle lipid content and insulin sensitivity in black versus white obese adolescents: Is there a race differential? J Clin Endocrinol Metab. 2010;95(5):2426-32. 62. Lee S, Deldin AR, White D, Kim Y, Libman I, Rivera-Vega M, et al. Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: A randomized controlled trial. Am J Physiol Endocrinol Metab. 2013;305(10):1222-9. 63. Lee S, Libman I, Hughan K, Kuk JL, Jeong JH, Zhang D, et al. Effects of exercise modality on insulin resistance and ectopic fat in adolescents with overweight and obesity: A randomized clinical trial. J Pediatr. 2019;206:91-8. 64. Björntorp P. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10(4):493-6. 65. Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: Implications for controlling dietary carbohydrates: a review. Nutr Metab. 2004;1(1):12-36. 66. Wajchenberg B, Giannella-Neto D, Da Silva M, Santos R. Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res. 2002;34(11/12):616-21. 67. Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki–Järvinen H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 2008;135(1):122-30. 68. Johnson NA, Stannard SR, Thompson MW. Muscle triglyceride and glycogen in endurance exercise. Sports Med. 2004;34(3):151-64. 69. Campos RMdS, Masquio DCL, Corgosinho FC, Caranti DA, Ganen AdP, Tock L, et al. Effects of magnitude of visceral adipose tissue reduction: Impact on insulin resistance, hyperleptinemia and cardiometabolic risk in adolescents with obesity after long-term weight-loss therapy. Diab Vasc Dis Res. 2019;16(2):196-206. 70. Sanches PL, de Mello MT, Elias N, Fonseca FA, Campos RM, Carnier J, et al. Hyperleptinemia: Implications on the inflammatory state and vascular protection in obese adolescents submitted to an interdisciplinary therapy. Inflammation. 2014;37(1):35-43. | ||
آمار تعداد مشاهده مقاله: 2,709 تعداد دریافت فایل اصل مقاله: 735 |