تعداد نشریات | 8 |
تعداد شمارهها | 308 |
تعداد مقالات | 3,860 |
تعداد مشاهده مقاله | 7,531,092 |
تعداد دریافت فایل اصل مقاله | 2,730,891 |
ارائة مدلی هوشمند برای پیشبینی نتایج مسابقات لیگ جهانی والیبال با استفاده از شبکههای عصبی | ||
مطالعات مدیریت ورزشی | ||
مقاله 1، دوره 9، شماره 44، مهر 1396، صفحه 17-36 اصل مقاله (546.67 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22089/smrj.2017.1811.1403 | ||
نویسندگان | ||
رسول نظری* 1؛ شیرین صابریان2؛ بنیامین نوروزی3 | ||
1دانشیار مدیریت ورزشی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان) | ||
2کارشناسیارشد مدیریت ورزشی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان) | ||
3دانشجوی دکتری مهندسی برق الکترونیک، دانشگاه علم و صنعت ایران | ||
چکیده | ||
هدف این پژوهش، ارائة روشی هوشمند برای پیشبینی نتایج مسابقات والیبال برمبنای آمار بازیهای انجامشدة قبلی بود. جامعة آماری شامل همة مسابقات ورزشی و نمونة پژوهش، مسابقات لیگ جهانی والیبال قهرمانی 2014 لهستان بود. روش پژوهش، توصیفی- تحلیلی بود که در بخش توصیفی،آمار بازیها شامل تعداد آبشارها، تعداد دفاعهای روی تور، تعداد سرویسهای موفق، تعداد خطاها، زمان بازی، امتیاز تیمها و تعداد ستهای برنده و بازنده، از سایت رسمی فدراسیون جهانی والیبال بهدست آمد. در بخش تحلیلی، اطلاعات با استفاده از جعبة ابزار شبکة عصبی نرمافزار متلب تجزیهوتحلیل شد و مدلی پیشبینی برای آن نیز ارائه شد. نتایج و نمودارهای حاصل از شبیهسازیهای انجامشده نشان داد که شبکة عصبی پرسپترون دولایه با هشت ورودی و یک خروجی بههمراه تابع انتقال تانژانت سیگموید، با 10 نورون در لایة مخفی اول و تابع انتقال خطی با 8 نورون در لایة مخفی دوم، با 10/93 درصد پیشبینی درست در مرحلة آموزش، 90 درصد پیشبینی درست در مرحلة صحتسنجی و 61/82 درصد پیشبینی درست در مرحلة آزمون، الگوی مناسبی برای پیشبینی نتایج مسابقات والیبال در این لیگ جهانی است. میتوان از این مدلها برای تعیین نقاط ضعف و قوت تیم خودی و حریفان استفاده کرد. درواقع، این مدل همانندآنالیزور یا کارشناس ماهری است که اطلاعات مفیدی را در اختیار مربیان و مدیران قرار میدهد. | ||
کلیدواژهها | ||
شبکة عصبی؛ والیبال؛ نتیجه؛ هوشمندی | ||
مراجع | ||
1. Ahmadi, P. Safari, M., Nemati, S. (2010). Enabling management staff (approaches, models, strategies, programs and evaluation). Tehran: Cultural Research Bureau. (Persian).
2. Ardestani, M., Chen, Z., Wang, L., Lian, Q., Liu, Y., He, J, …, & Jin, Z. (2014). A neural network approach for determining gait modifications to reduce the contact force in knee joint implant. Medical Engineering & Physics, 36(10), 1253-65.
3. Boulier Bryan, L., & Stekler, H. (2003). Predicting the outcomes of National Football League games. International Journal of Forecasting, 19(2), 257-70.
4. Condon, E. M., Golden, B. L., & Wasil, E. A. (1999). Predicting the success of nations at the Summer Olympics using neural networks. Computers & Operations Research, 26(13), 1243-65.
5. Derevenco, M., Albu, M., & Duma, E (2002). Forecasting of top athletic performance, Rom J Physiol, 39(1), 57-62.
6. Eydi, H., & Asgari, B. (2014). Appraisal and analyze of Iran performance in the Asian Games compared with other competitors. Studies Management Basics in Sports, 1(1), 73-84. (Persian).
7. Forrest, D., Ismael, S., & Tena, J. (2010). Forecasting national team medal totals at the summer Olympic Games. International Journal of Forecasting, 26(1), 576-88.
8. Forrest, D., & Simmons, R. (2000). Forecasting sports results: The behaviour and performance of football tipsters. International Journal of Forecasting, 16(1), 317–31.
9. Gorzi, A., Afsar, A., Ehsani, M., Mohammadi, S., Azar, A., & Izadi, A. (2009). Design of predicted model for the position of Iran national football team in the FIFA rankings using fuzzy neural network. Olympic Journal, 46(2), 113-25. (Persian).
10. Haghighat, M., Rastegari, H., & Noorafza, N. (2013). Improve the accuracy of prediction basketball tournament results using feature selection. Second National Conference on Science and Computer Engineering, Islamic Azad University of Najaf Abad, 1(2), 1-7. (Persian).
11. Hematinezhad, M., Gholizadeh, M., Ramezaniyan, M., Shafiee, S., & Ghazi Zahedi, A. (2011). Predicting the success of nations in Asian games using neural network. Sport SPA, 8(1), 33-42.
12. Huang, K. Y., & Chen, K. J. (2011). Multilayer perceptron for prediction of 2006 world cup football game. Advances in Artificial Neural Systems, 2011(1), 1-8.
13. Iyer, S. R., & Sharda, R. (2009). Prediction of athletes performance using neural networks: An application in cricket team selection. Expert Systems with Applications, 36(3), 5510-22.
14. Kia S. M. (2014) Neural Networks in MATLAB. Third Press. Tehran, Kian University Press. 408 pages.
15. Lana, X. M., & Chong, W. Y. (2015). The Mediating role of psychological empowerment between transformational leadership and employee work attitudes. Social and Behavioral Sciences, 172(1), 184 –91.
16. Maleki, M., Nasiripor, A., & Amini, F. (2011). Correlation of entrusting managers how to guide staff in hospitals of Qom. Qom University of Medical Sciences, 5(3), 79-85. (Persian).
17. Marzooghi, A., & Soleymani, V. (2010). Football predictions based on partial data using artificial neural network. First Student Conference on Information Technology, University of Kurdistan, 1(1), 1-6. (Persian).
18. Nielsen, K. N., Holm, P., & Aschan, M. (2015). Results based management in fisheries: Delegating responsibility to resource users. Marine Policy, 51(1), 442–51.
19. Scheibehenne, B., & Bröder, A. (2007). Predicting Wimbledon 2005 tennis results by mere player name recognition. International Journal of Forecasting, 23(1), 415-26.
20. Sgroi, D., & Zizzo, D. J. (2009). learning to play 3×3 games: Neural networks as bounded-rational players. Journal of Economic Behavior & Organization, 69(1), 27-38.
21. Sofotasiou, P., Hughes, B., Calautit, J. (2015). Qatar 2022: Facing the FIFA World Cup climatic and legacy challenges. Sustainable Cities and Society 14(1),16-30. | ||
آمار تعداد مشاهده مقاله: 3,265 تعداد دریافت فایل اصل مقاله: 615 |