
تعداد نشریات | 8 |
تعداد شمارهها | 309 |
تعداد مقالات | 3,889 |
تعداد مشاهده مقاله | 7,757,386 |
تعداد دریافت فایل اصل مقاله | 2,827,922 |
Deep Learning Approach for Detection of Head Injuries in Football from Spatial-Temporal Features in Video Data | ||
Journal of Exercise and Health Science | ||
دوره 2، شماره 3، شهریور 2022، صفحه 25-44 اصل مقاله (605.72 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22089/jehs.2024.14528.1068 | ||
نویسنده | ||
Mohsen Esmaeili Sani* | ||
PhD student in sports management, Mazandaran University-Babolsar, Iran. | ||
چکیده | ||
Objective: The aim of this study is to propose a deep learning approach for detecting head injuries in football video data using spatial-temporal features. Methods: The proposed method employs ResNet-50 architecture and the Temporal Shift Module (TSM) for feature learning and classification. The algorithm is trained with a publicly available soccer video dataset labeled with annotated head injuries. The evaluation of the proposed method is done on a test set that includes 500 football videos, and the evaluation criteria used include overall accuracy, precision, recall, and F1 score. Results: The proposed algorithm achieves an overall accuracy of 0.986 in detecting head injuries in the test set, which is a significant improvement compared to previous studies in the same field. Conclusions: The proposed method provides a promising approach for head impact event detection using spatio-temporal features, which could have important implications for sports and medical industries. However, the model requires a large amount of annotated data for training, and future research could focus on addressing limitations such as developing more efficient training methods and incorporating other techniques to identify head injuries outside the camera's field of view. | ||
کلیدواژهها | ||
Brain Concussion؛ Traumatic Brain Injury؛ Machine Learning؛ Neural Networks (Computer)؛ Video Recording | ||
مراجع | ||
1. Allison, M. A., Kang, Y. S., Bolte, J. H., Maltese, M. R., & Arbogast, K. B. (2014). Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Medicine and science in sports and exercise, 46(1), 115-123. 2. Beaudouin, F., Demmerle, D., Fuhr, C., Tröß, T., & Meyer, T. (2021). Head impact situations in professional football (soccer). Sports medicine international open, 5(02), E37-E44. 3. Beckwith, J. G., Greenwald, R. M., Chu, J. J., Crisco, J. J., Rowson, S., Duma, S. M., ... & Collins, M. W. (2013). Head impact exposure sustained by football players on days of diagnosed concussion. Medicine and science in sports and exercise, 45(4), 737. 4. Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016, September). Simple online and realtime tracking. In 2016 IEEE international conference on image processing (ICIP) (pp. 3464-3468). IEEE. 5. Bourdet, N., Deck, C., Trog, A., Meyer, F., Noblet, V., & Willinger, R. (2021, September). Deep learning methods applied to the assessment of brain injury risk. In Proceedings of International Research Conference on the Biomechanics of Impacts. 6. Caccese, J. B., Lamond, L. C., Buckley, T. A., & Kaminski, T. W. (2016). Reducing purposeful headers from goal kicks and punts may reduce cumulative exposure to head acceleration. Research in sports medicine, 24(4), 407-415. 7. Campbell, K. R., Marshall, S. W., Luck, J. F., Pinton, G. F., Stitzel, J. D., Boone, J. S., ... & Mihalik, J. P. (2020). Head impact telemetry system’s video-based impact detection and location accuracy. Medicine and science in sports and exercise, 52(10), 2198. 8. Chrisman, S. P., Ebel, B. E., Stein, E., Lowry, S. J., & Rivara, F. P. (2019). Head impact exposure in youth soccer and variation by age and sex. Clinical journal of sport medicine, 29(1), 3-10. 9. Deliege, A., Cioppa, A., Giancola, S., Seikavandi, M. J., Dueholm, J. V., Nasrollahi, K., ... & Van Droogenbroeck, M. (2021). Soccernet-v2: A dataset and benchmarks for holistic understanding of broadcast soccer videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4508- 4519). 10. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2625-2634). 11. Fafula, A., & Peterson, R. (2015). Predicting Global Economic Activity with Media Analytics. Available on Research Gate. 12. Fanton, M., Wu, L., & Camarillo, D. (2020). Comment on “Frequency and magnitude of game-related head impacts in male contact sports athletes: a systematic review and meta-analysis”. Sports medicine, 50(4), 841-842. 41 Journal of Exercise and Health Science, Vol. 02, No. 03, Summer 2022 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License 13. Forsyth, D., & Ponce, J. (2012). Computer vision: A modern approach. Always learning. 14. Gabler, L. F., Huddleston, S. H., Dau, N. Z., Lessley, D. J., Arbogast, K. B., Thompson, X., ... & Crandall, J. R. (2020). On-field performance of an instrumented mouthguard for detecting head impacts in American football. Annals of biomedical engineering, 48, 2599-2612. 15. Ghazi, K., Wu, S., Zhao, W., & Ji, S. (2021). Instantaneous whole-brain strain estimation in dynamic head impact. Journal of Neurotrauma, 38(8), 1023-1035. 16. Jiang, Y., Cui, K., Chen, L., Wang, C., & Xu, C. (2020, October). Soccerdb: A large- scale database for comprehensive video understanding. In Proceedings of the 3rd International Workshop on Multimedia Content Analysis in Sports (pp. 1-8). 17. Jocher, G., Stoken, A., Borovec, J., Chaurasia, A., Changyu, L., Laughing, A. V., ... & Ingham, F. (2021). ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models AWS Supervise. ly and YouTube integrations. Zenodo, 11. 18. King, D., Hume, P., Gissane, C., Brughelli, M., & Clark, T. (2016). The influence of head impact threshold for reporting data in contact and collision sports: systematic review and original data analysis. Sports medicine, 46(2), 151-169. 19. Kuo, C., Wu, L., Loza, J., Senif, D., Anderson, S. C., & Camarillo, D. B. (2018). Comparison of video-based and sensor-based head impact exposure. PloS one, 13(6), e0199238. 20. Kontos, A. P., Dolese, A., Elbin Iii, R. J., Covassin, T., & Warren, B. L. (2011). Relationship of soccer heading to computerized neurocognitive performance and symptoms among female and male youth soccer players. Brain Injury, 25(12), 1234- 1241. 21. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1725-1732). Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1725-1732). 22. Gu, Y., Wang, Q., & Qin, X. (2021, October). Real-time streaming perception system for autonomous driving. In 2021 China Automation Congress (CAC) (pp. 5239- 5244). IEEE. 23. Li, Z., Gavrilyuk, K., Gavves, E., Jain, M., & Snoek, C. G. (2018). Videolstm convolves, attends and flows for action recognition. Computer Vision and Image Understanding, 166, 41-50. 24. Lin, T. Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., ... & Dollár, P. (2015). Microsoft COCO: common objects in context. arXiv. arXiv preprint arXiv:1405.0312, 21. 25. Lin, J., Gan, C., & Han, S. (2019). Tsm: Temporal shift module for efficient video understanding. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 7083-7093). Soltanirad: Detecting Head Injuries in Football Using Deep… 42 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License 26. Lipton, M. L., Kim, N., Zimmerman, M. E., Kim, M., Stewart, W. F., Branch, C. A., & Lipton, R. B. (2013). Soccer heading is associated with white matter microstructural and cognitive abnormalities. Radiology, 268(3), 850. 27. Lipton, Z. C., Elkan, C., & Narayanaswamy, B. (2014). Thresholding classifiers to maximize F1 score. arXiv preprint arXiv:1402.1892. 28. Hanlon, E. M., & Bir, C. A. (2012). Real-time head acceleration measurement in girls' youth soccer. Medicine and science in sports and exercise, 44(6), 1102-1108. 29. Haran, F. J., Tierney, R., Wright, W. G., Keshner, E., & Silter, M. (2013). Acute changes in postural control after soccer heading. International journal of sports medicine, 34(04), 350-354. 30. Hasija, V., & Takhounts, E. G. (2022). Deep learning methodology for predicting time history of head angular kinematics from simulated crash videos. Scientific Reports, 12(1), 6526. 31. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 32. Martin, Z., Hendricks, S., & Patel, A. (2021). Automated tackle injury risk assessment in contact-based sports-a rugby union example. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4594-4603). 33. Miller, L. E., Pinkerton, E. K., Fabian, K. C., Wu, L. C., Espeland, M. A., Lamond, L. C., ... & Urban, J. E. (2020). Characterizing head impact exposure in youth female soccer with a custom-instrumented mouthpiece. Research in Sports Medicine, 28(1), 55-71. 34. Montenigro, P. H., Alosco, M. L., Martin, B. M., Daneshvar, D. H., Mez, J., Chaisson, C. E., ... & Tripodis, Y. (2017). Cumulative head impact exposure predicts later-life depression, apathy, executive dysfunction, and cognitive impairment in former high school and college football players. Journal of neurotrauma, 34(2), 328-340. 35. Nevins, D., Hildenbrand, K., Kensrud, J., Vasavada, A., & Smith, L. (2016). Field evaluation of a small form-factor head impact sensor for use in soccer. Procedia engineering, 147, 186-190. 36. O'Connor, K. L., Rowson, S., Duma, S. M., & Broglio, S. P. (2017). Head-impact– measurement devices: a systematic review. Journal of athletic training, 52(3), 206- 227. 37. Patton, D. A., Huber, C. M., Jain, D., Myers, R. K., McDonald, C. C., Margulies, S. S., ... & Arbogast, K. B. (2020). Head impact sensor studies in sports: a systematic review of exposure confirmation methods. Annals of biomedical engineering, 48(11), 2497-2507. 38. Press, J. N., & Rowson, S. (2017). Quantifying head impact exposure in collegiate women's soccer. Clinical journal of sport medicine, 27(2), 104-110. 39. Raymond, S. J., Cecchi, N. J., Alizadeh, H. V., Callan, A. A., Rice, E., Liu, Y., ... & Camarillo, D. B. (2022). Physics-informed machine learning improves detection of head impacts. Annals of biomedical engineering, 50(11), 1534-1545. 43 Journal of Exercise and Health Science, Vol. 02, No. 03, Summer 2022 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License 40. Rezaei, A., & Wu, L. C. (2022). Automated soccer head impact exposure tracking using video and deep learning. Scientific reports, 12(1), 9282. 41. Rico-González, M., Pino-Ortega, J., Méndez, A., Clemente, F., & Baca, A. (2023). Machine learning application in soccer: a systematic review. Biology of sport, 40(1), 249-263. 42. Rodrigues, A. C., Lasmar, R. P., & Caramelli, P. (2016). Effects of soccer heading on brain structure and function. Frontiers in neurology, 7, 38. 43. Sanchez, E. J., Gabler, L. F., Good, A. B., Funk, J. R., Crandall, J. R., & Panzer, M. B. (2019). A reanalysis of football impact reconstructions for head kinematics and finite element modeling. Clinical biomechanics, 64, 82-89. 44. Sandmo, S. B., Gooijers, J., Seer, C., Kaufmann, D., Bahr, R., Pasternak, O., ... & Koerte, I. K. (2021). Evaluating the validity of self-report as a method for quantifying heading exposure in male youth soccer. Research in sports medicine, 29(5), 427-439. 45. Siegmund, G. P., Guskiewicz, K. M., Marshall, S. W., DeMarco, A. L., & Bonin, S. J. (2016). Laboratory validation of two wearable sensor systems for measuring head impact severity in football players. Annals of biomedical engineering, 44(4), 1257- 1274. 46. Stemper, B. D., Shah, A. S., Harezlak, J., Rowson, S., Mihalik, J. P., Duma, S. M., ... & CARE Consortium Investigators. (2019). Comparison of head impact exposure between concussed football athletes and matched controls: evidence for a possible second mechanism of sport-related concussion. Annals of biomedical engineering, 47, 2057-2072. 47. Stewart, W. F., Kim, N., Ifrah, C. S., Lipton, R. B., Bachrach, T. A., Zimmerman, M. E., ... & Lipton, M. L. (2017). Symptoms from repeated intentional and unintentional head impact in soccer players. Neurology, 88(9), 901-908. 48. Stephens, R., Rutherford, A., Potter, D., & Fernie, G. (2010). Neuropsychological consequence of soccer play in adolescent UK school team soccer players. The Journal of neuropsychiatry and clinical neurosciences, 22(3), 295-303. 49. Takhounts, E. G., Eppinger, R. H., Campbell, J. Q., Tannous, R. E., Power, E. D., & Shook, L. S. (2003). On the development of the SIMon finite element head model (No. 2003-22-0007). SAE Technical Paper. 50. Thomas, G., Gade, R., Moeslund, T. B., Carr, P., & Hilton, A. (2017). Computer vision for sports: Current applications and research topics. Computer Vision and Image Understanding, 159, 3-18. 51. Wang, T., Kenny, R., & Wu, L. C. (2021). Head impact sensor triggering bias introduced by linear acceleration thresholding. Annals of biomedical engineering, 49(12), 3189-3199. 52. Wang, X., & Gupta, A. (2018). Videos as space-time region graphs. In Proceedings of the European conference on computer vision (ECCV) (pp. 399-417). 53. Wu, S., Zhao, W., Ghazi, K., & Ji, S. (2019). Convolutional neural network for efficient estimation of regional brain strains. Scientific reports, 9(1), 17326. Soltanirad: Detecting Head Injuries in Football Using Deep… 44 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License 54. Wu, L. C., Nangia, V., Bui, K., Hammoor, B., Kurt, M., Hernandez, F., ... & Camarillo, D. B. (2016). In vivo evaluation of wearable head impact sensors. Annals of biomedical engineering, 44(4), 1234-1245. 55. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., & Toderici, G. (2015). Beyond short snippets: Deep networks for video classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4694-4702). 56. Zhan, X., Liu, Y., Raymond, S. J., Alizadeh, H. V., Domel, A. G., Gevaert, O., ... & Camarillo, D. B. (2020). Deep learning head model for real-time estimation of entire brain deformation in concussion. arXiv preprint arXiv:2010.08527. 57. Zhan, X., Liu, Y., Raymond, S. J., Alizadeh, H. V., Domel, A. G., Gevaert, O., ... & Camarillo, D. B. (2021). Rapid estimation of entire brain strain using deep learning models. IEEE Transactions on Biomedical Engineering, 68(11), 3424-3434. 58. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43-76 | ||
آمار تعداد مشاهده مقاله: 1,375 تعداد دریافت فایل اصل مقاله: 5,382 |